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ABSTRACT 

Introduction: We have revised the steps of the sample sizes calculation for the 

biomedical research. 

Then, focusing on the agreement studies on qualitative variables we have shown the 

derivation of the Cohen’s kappa together with the factors influencing its value, leading 

to have low kappa values even in presence of a relevant observed agreement. We 

have revised the sample size calculation approaches for the Cohen’s kappa proposed 

in the statistical literature. 

Methods: We have calculated the sample sizes for agreement studies based on the 

Cohen’s kappa statistics according to the main relevant literature proposals, such as 

those of Flack et al. [74] and of Donner et al. [92,94] Then, we have proposed a 

partial extension of the common correlation model (PCCM) for 2x2 contingency table 

to cxc square contingency tables with a common correlation coefficient of the cells on 

the principal diagonal, considered pair wise. Finally, we have conceived a full 

generalization with a common correlation coefficient model (FCCM) of all cells of the 

square contingency table. 

Results: From our PCCM, we have obtained very similar maximum and minimum 

values of the kappa variance, leading to have sample sizes slightly different. 

Otherwise, from FCCM, it is obtained a unique contingency table and, consequently, a 

unique value of the kappa variance to be used under the null and the alternative 

hypothesis for sample sizes calculation leading to have only one value of the sample 

size. More relevantly, this latter sample size is within or equal to the sample sizes 

calculated by using the maximum and minimum value of the kappa variance under 

PCCM. In the case of 2x2 contingency tables, all our sample sizes proposed methods 

(SS-A&C-max, SS-A&C-min, and SS-A&C-full) gave equal sample sizes which are, in 

addition, equal to those calculated according to Flack et al. [74], being the sample 

sizes from Donner et al. [92,94] generally greater. 

For 3x3 contingency tables, the sample sizes calculated according to our proposed 

models are lower than or equal to those calculated according to Flack et al. [74] and, 

also almost always, lower than those from Donner et al. [92,94] The same occurs for 

the 4x4 tables. 

Discussion / conclusions: Sample sizes from our proposed models can be generally 

recommended since they are lower than or at maximum equal to those obtained by 
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the Flack et al.’s approach [74]. In addition, our proposed 

procedures give very similar maximum and minimum sample 

size values under PCCM and only one sample size value under 

FCCM. Furthermore, sample size proposed by Donner et al. 

[92,94] can be considered only in the case in which they are 

lower and the primary objective of the study is the “agreement 

or not” instead of a diversified level of agreement assessed 

through the weighted kappa. Finally, the fact that there is a 

unique kappa variance value under the FCCM, leading to 

sample sizes always within those calculated from the maximum 

and minimum values of the kappa variance under PCCM, 

allows to argue that this model actually refers to the 

population probability table. 

INTRODUCTION 

General considerations on sample size calculation 

It is very well known that the question most frequently asked to 

a biostatistician is: “how many patients/subjects/experimental 

or observational units I have to enroll in a particular trial for 

demonstrating…?”. This question could have a not so difficult 

answer, after having obtained the necessary information that 

the researcher is often surprised to have to add. More 

disarming for the biostatisticians is the question: “I have only X 

patients/subjects/experimental or observational units. Can I 

demonstrate X differences and X associations and so on, and 

so on…?”.Actually, for obtaining a sensible response the 

biostatistician and the researcher need to arm themselves with 

a lot of patience and willingness to interact. 

Indeed, it is widely recognized that biomedical research has to 

be adequately powered in order to have a high probability to 

achieve their goals. Particularly, in experimental research the 

sample size calculation is usually power-based on the statistical 

significance test of the primary endpoint. Of course, the need 

of having a high probability of rejecting a statistical null 

hypothesis of no difference, superiority (difference given by a 

superiority margin), non-inferiority (difference given by a non-

inferiority margin), or equivalence (difference given by two, 

usually symmetric, equivalence margins) is well recognized and 

pursued by researchers. 

Also the sample sizes calculation for observational studies 

(cross-sectional, case-control and cohorts) with two groups are 

traditionally based on the power of statistical tests for having 

a satisfactory enough probability of demonstrating a clinically 

relevant difference from the null value of 1 of the odds ratio 

(OR) or of the relative risk (RR) or of the hazard ratio (HR), for 

example. 

Furthermore, cross-sectional studies can have sample sizes 

power-based calculated on a statistical test for demonstrating 

relationships between two qualitative variables such as the 

presence of a disease (yes or not) and the presence of a risk 

factor (yes or not). Of course, this association can be 

quantified, in addition to the difference between two 

proportions, by means of OR or of RR. Of course, the 

correlation coefficient (parametric or not) has to be used for 

assessing the relationship between quantitative variables. In 

addition, it has to be noted that if multivariable statistical 

procedures (linear regression, logistic regression, Cox’s 

proportional regression, etc.) are used for obtaining the most 

parsimonious set of the “independent variables independently” 

associated with the dependent variable, the sample size has to 

be calculated accordingly.  

However, sample sizes for observational research enrolling 

only one group of patients are frequently based on the 

precision of the estimate of the primary outcome. This occurs, 

particularly, in the case of observational research on 

administrative data with very huge mass of data. 

Nonetheless, it has to be pointed out that also in one-group 

observational studies, the conclusion of rejecting a null 

hypothesis formulated on an “expected value”, obtained from 

a careful search of the pertinent literature, makes the research 

more useful and scientifically more appealing instead (or in 

addition) of a statement about the precision of an estimate. An 

“expected value” can be the proportion of success to be tested 

by means of the binomial test, for example, or the mean of a 

quantitative variable to be tested by means of the paired 

Student’s t test, for example. 

Indeed, a sentence on the precision of an estimate, given by 

the confidence interval width, is a generic statement much less 

interesting to the clinicians/researchers than a sentence about a 

research hypothesis such as “the proportion of survival is more 

(lower) than an expected value” or such as “the mean blood 

pressure decrease is more (lower) than an expected value”. It 

has to be stressed that the “expected value” has to be 

obtained from the mostly relevant pertinent literature (meta-

analysis, particularly) and, consequently, is a relevant piece of 
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scientific knowledge that can rightly to be taken as the 

parameter of statistical hypotheses. 

Furthermore, it has to be pointed out that the required precision 

of an estimate, say the width of a 95% Confidence Interval 

(CI), is obtained in only about the 50% of the cases (as the 

probability of getting heads or tails by flipping a fair coin), 

unless appropriate statistical procedures are activated which 

take into account the “Confidence Interval Power”, according, 

among others, to Beal [1]. 

A different approach of increasing the power-based sample 

size for having an adequate probability of obtaining a sample 

95%CI width less than a “required width”, in the case of testing 

a proportion against an expected value by means of the 

binomial test, has been proposed by Cesana et al. [2] and, in 

the case of testing two paired and unpaired proportions, by 

Cesana [3]. Jiroutek et al. [4] suggested, in the context of 

quantitative variables assumed Gaussianly distributed, a 

further extension of the sample size calculation based on 

considering jointly the power of the statistical test and the 

probability of obtaining a required 95% CI width, given the 

coverage. However, Jiroutek et al.’s approach [4],primarily 

based on the precision and, consequently, on very narrow 95% 

CI widths, requires too high sample sizes, not acceptable for 

ethical reasons as it has been pointed out by Cesana and 

Antonelli [5]. Indeed, for comparing two groups at a 

significance value of 0.05 (two-tailed) with a probability equal 

to 0.80 of jointly obtaining a required effect size of 1 and a 

required standardized 95% CI width of 1, given the coverage, 

is necessary a total of 74 subjects; otherwise, with the same 

significance and power, a total of 34 subjects are necessary 

for demonstrating an effect size of 1 for the statistical test 

which is the main objective in a controlled clinical trial (Jiroutek 

et al.’s Table 2, page 584 [4]). Furthermore, the above total of 

74 becomes 268 if the required standardized CI width is of 

0.5. Finally, an approach based on the two joint powers of the 

statistical test and of the 95%CI, given the coverage, and 

requiring lower and ethically acceptable sample sizes, has 

been proposed by Cesana and Antonelli [6] Indeed, Cesana 

and Antonelli’s approach [6] starts from considering the 95% 

CI width obtained with the calculated power-based sample 

size. Then, if this 95% CI width is considered to be an 

adequate precision of the estimate, as often happens, the 

power-based sample size is iteratively increased for jointly 

obtaining an adequate test power (at least more than 0.80) 

and a 95% CI power (at least more than 0.75), given the 

coverage. Very importantly, this composite objective is usually 

obtained by increasing the power-based sample size of only a 

few units. 

Finally, it has to be stressed that underpowered scientific 

research have to be avoided since it is unethical enrolling 

human beings (or animals, too) into a research without a 

satisfactory enough probability of obtaining some scientifically 

relevant results. However, also overpowered scientific research 

are, again, unethical since too many human beings (or animals, 

too) are exposed to experimental risks and too many resources 

are wasted. The wasting of resources is mainly relevant in the 

case of observational studies carried out, particularly, on 

administrative database with thousands of records. Let’s 

remember the essential ingredients of the sample size 

calculation, already proposed, for example, by Cesana and 

Cavaliere [7]. 

Apart, the kind of the variable that is the main expression of 

the investigated phenomenon and, consequently, represents the 

primary outcome of the study on which procedure of the 

statistical testis determined, it has to be remembered: (i) the 

significance threshold (usually fixedat = 0.05, two tailed); (ii) 

the power (usually fixed at 1 -  = 0.80, at least); (iii) the 

minimal clinically relevant effect to demonstrate in the context 

of a superiority trial (null hypothesis of no difference). It has to 

be noted that the “minimal clinically relevant effect” becomes 

the “maximal clinically not relevant effect” in the context of 

non-inferiority or equivalence studies. 

Then, it is worthwhile to specify that “the effect” can be the 

difference between two proportions (complete response, 

survival, relapse, etc.), the difference between two changes of 

a quantitative variable (blood pressure, cardiac index, left 

ejection ventricular fraction – LEVF -, etc.) or the OR, or the RR, 

or the HR. Sometimes, it has to be remembered, the effect 

consists in a difference between two (or more) regression or 

correlation coefficients. An optimal estimate of the effect to be 

considered in the sample sizes calculation has to be 

appropriately obtained from an exhaustive search of the 

pertinent literature. Having retrieved some values, as usual, 



Biometrics And Biostatistics Journal 

 04 

Sample Size Calculation for Agreement Studies on Qualitative Variables Using Cohen’s Kappa: A Review and New Proposals. 
Biometrics And Biostatistics Journal. 2021; 3(1):115. 

they have to be combined through a weighted mean, for 

example [7].  

In the case of quantitative variables, an adequate estimate of 

the phenomenon variability must also be obtained. To this 

regards, it is quite easy to obtain cross-sectionally (at baseline 

and at the end of a trial, for example) some values of the 

standard deviation together with their pertinent means. 

However, if the researcher is interested on a difference 

between two (or more) means of the change (decrease / 

increase) from the start and the end of a treatment obtained in 

two groups (one treated with a new drug and the other treated 

with the standard drug, for example), the pertinent variability 

has to be expressed by the standard deviation of the change 

recorded on each patient. If the standard deviation of the 

change has not been reported in the paper, it has to be 

estimated by taking into account the correlation coefficient 

(generally, ranging from -1 to 1, but in this case, sensibly only 

from 0.3 to 0.8) between baseline and final values [7].  

In some cases, a more refined pooling can be done, taking into 

account also the variability; indeed, sample sizes are not 

optimal weights for a mean calculation when the effect size 

index is a standardized difference mean [8]. 

It is warmly recommended to calculate the sample sizes for 

some possible scenarios leading to the construction of the so-

called “power curves” with the power on the vertical axis and 

the sample size values on the horizontal axis for a fixed effect 

size (or the effect size values on the horizontal axis for a fixed 

sample size) in order to more effectively grasp the increasing 

power pattern as a function of the sample size (or effect size). 

It has to be noted that power curves can be obtained, among 

the free sample size calculation software, also by G*Power [9]. 

Effect size 

According to Wilkinson [10], the effect sizes have to be always 

presented for the primary outcomes of a research. Furtherly, 

for variables with measurement unit practically meaningful, it is 

recommended to report the absolute measure of the difference 

together with the measure of the phenomenon variability 

without providing only the standardized effect size index such 

as the Cohen’s d [11], obtained by the ratio between the true 

difference and the true phenomenon variability (). Indeed, 

even if only one number might seem more simpler, it is better 

that researchers get used to consider and to communicate the 

phenomenon variability, since the same effect size value is 

obtained by very different combination of the difference () 

and of the variability () or by quoting Length [12] “you'll 

choose the same sample size (n) regardless of the accuracy or 

reliability of your instrument, or the narrowness or diversity of 

your subjects.” However, it has also to be said that in the same 

biomedical research field, the variability can be within narrow 

limits that are very well known by expert researchers, leading 

to have a very precise idea of the suitable difference given by 

the effect size value, without the need of specifying both. 

It is absolutely to be avoided, as Lipsey et al. [13] pointed out: 

“The widespread indiscriminate use of Cohen’s generic small, 

medium, and large effect size values to characterize effect 

sizes in domains to which his normative values do not apply is 

thus likewise inappropriate and misleading."However, also 

Cohen [11] cautioned to refer generally to the classes of 

“small”, “medium”, or “big” effect size by stating: "The terms 

'small,' 'medium,' and 'large' are relative, not only to each 

other, but to the area of behavioral science or even more 

particularly to the specific content and research method being 

employed in any given investigation.” 

Apart from the inclusion of some other effect sizes classes such 

as “very small”, “very large”, and “huge” proposed by 

Sawilowsky [14], it has to be reported the absolutely 

shareable conclusion from Ellis [15]: “Researchers should 

interpret the substantive significance of their results by 

grounding them in a meaningful context or by quantifying their 

contribution to knowledge, and Cohen's effect size descriptions 

can be helpful as a starting point." 

Finally, for sake of completeness, it has to be remembered that 

there are many kind of “effect size” as the Cohen’s books [11] 

report; particularly, “d” for the comparison of two population 

means through the unpaired Student’s t test, “f” for the 

comparison of more than two population means through the 

Analysis of Variance, “h” for differences between proportions 

trough the arcsine transformation, “f2” for multiple regression 

and correlation analysis, etc. For a general and simple 

overview, readers are referred to the Wikipedia Web site of 

the effect size [16]. For further details the Ellis’ book [15] and 

Cohen’s books [11] are strongly recommended. 
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Power calculation “a priori” or “a posteriori” 

A further debated point is whether the sample size calculation 

can be done also “a posteriori”, after the data analysis of a 

study for justifying a not statistical significant result, for 

example. However, it has to be said that this it is a useless 

procedure as a result is not statistically significant because the 

sample size is not enough, given the effect size shown by the 

sample data or, in other words, the power of the statistical test 

is insufficient. Otherwise, a power analysis after a statistically 

significant result will always result in a high satisfactory power 

value. So, this approach has to be strongly discouraged since, 

in addition to be meaningless, it is not acceptable, for the 

statistical point of view, to assume the sample statistics as the 

population parameters under the alternative hypothesis, being 

the null hypothesis of no difference automatically formulated. A 

recent Editorial about this point, easily readable also for non-

biostatisticians, is from Jiroutek and Turner [17]. 

A completely different situation is if we ask ourselves from a 

theoretical point of view which is the effect sizes that are 

possible to demonstrate at a satisfactory probability (power) 

by means of some pertinent statistical tests, given the sample 

size actually enrolled in a trial without an “a priori” power 

analysis or prematurely terminated. Indeed, the knowledge of 

the effect sizes allows readers to form their own opinion about 

the clinical relevance of the statistical significant (or not) results. 

It has also to be pointed out that only the statistical tests 

carried out on randomized groups have their nominal values of 

Type I error (a true null hypothesis is rejected) and of Type II 

error (a false null hypothesis is not rejected) from whose 

complement to 1 the statistical test power is calculated. Of 

course, the two above errors (probabilities) have to be 

considered in the context of the frequentist paradigm of the 

“infinite repetition” of the same trial under absolutely identical 

conditions. 

Of course, also the agreement studies between two (or more) 

raters on qualitative variables (nominal or ordinal) and 

between two (or more) measurement methods of quantitative 

variables need to be adequately powered.  

Considering the agreement between two or more raters on 

qualitative variables, it is immediate to refer to Cohen’s kappa 

statistics, “in spite of its shortcomings and perceived 

paradoxes” as reported by Choudhary and Nagaraja [18] in 

Chapter 12 on “Categorical Data” of their book. However, it 

has to be immediately said that the above paradoxes can be 

explained by using the mathematical properties of the Cohen’s 

kappa statistics. 

Models for exploring agreement 

It is very well know that it is often recommended to model the 

agreement and disagreement by means of “Conditional 

Logistic Regression Models” introduced firstly by Barlow [19], 

“Log-Linear Models”, useful for exploring the agreement in the 

case of nominal and ordinal variables, firstly proposed by 

Tanner and Young [20], and “Generalized Linear Mixed-

Effects Models” with their usual probit link function, adapted by 

Choudhary and Nagaraja [18] from Nelson and Edwards [21]. 

An excellent overview of modeling the agreement and 

disagreement between raters using categorical rating scales is 

in Agresti [22] and in both editions of Agresti’s book [23]. 

Indeed, Agresti [23] (Chapter 11 Models for Matched Pairs 

(pages 413-454), paragraph 11.5.4 Kappa: A Summary 

Measure of Agreement, page 434- and 11.5.5 Weighted 

Kappa: Quantifying Disagreement) wrote as the last sentence: 

“models can provide more detailed description of the 

agreement and disagreement structure”. 

In addition, Von Eye and Mun [24], considered in Chapter 3 

“Exploring Rater Agreement” of their book “The Configural 

Frequency Analysis (CFA)” proposed by Lienert and Krauth 

[25] and reconsidered particularly by von Eye [26,27] as “a 

method for exploring cross-classifications in order to answer 

the question if the absolute frequency of a cell is more than or 

less than expected according to a particular chance model”. 

Indeed, summarizing the characteristics of a probability table 

by a single measure could lead to a loss of information and, 

apart from the case in which kappa is close to 1, the joint 

distribution of raters' judgments is not adequately described. 

Furthermore, kappa values from two or more tables cannot be 

compared, leading to a further limitation of an approach 

based on Cohen’s kappa. However, it has to be said that in the 

biomedical literature, the Cohen’s kappa approach is the most 

used, and, therefore, we will focus on its sample size 

calculation. 

Historical digression on agreement indices  

Without any claim of being exhaustive, it has to be 

remembered an early paper from Guttman [28], the Goodman 
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and Kruskal’s λ [29], the Bennett et al.’s S [30], the Scott’s π 

[31] as some early proposals of agreement indices, and, 

finally, the Cohen’s κ [32]. Generally, these indices are used to 

summarize the cross classification of two qualitative variables 

with identical categories, as it has been pointed out, among 

others, by Brennan and Prediger [33], Zwick [34], Krippendorff 

[35], and DeMast [36]. Warrens [37] showed some inequalities 

and relationships of the above reported indices such as the fact 

that Bennett et al.’s “S” [30] is an upper bound of Cohen’s κ 

[32] “if for the k×k table the permutation that orders the 

marginal probabilities from lowest to highest is the same for 

the rows and the columns (weak symmetry)”. 

In addition, Warrens [38] demonstrated the identity or the 

similarity with Cohen’s kappa “of all the three agreement 

coefficients, originally introduced in 1914-1915 by the Italian 

statistician Corrado Gini” [39,40]. Moreover, it has been shown 

that the point estimates of Cohen's kappa and the two smaller 

Gini coefficients are very similar from the real data, leading, in 

practice, to the same conclusions about the degree of inter-

rater agreement. Moreover, Gini's coefficients [39,40] were 

also considered by other authors such as Brennan and Prediger 

[33], Cohen [32], Janson and Vegelius [41], and Popping [42]. 

Furthermore, Ato et al. [43] showed a recent comparison 

among six rater agreement measures, including three historical 

indices such as the coefficient σ(S) suggested by Bennet’s [30], 

Scott’s π [31], and Cohen’s κ [32]. In addition, Ato et al. [43] 

considered Gwet’s γ [44] “as an expression of the classical 

descriptive approach”, the Aickin’s α [45] “as an expression of 

log-linear and mixture model approaches”, and Martín and 

Femia’s ∆ measure [46] “representing a multiple-choice test”. 

Accordingly to Ato et al. [43]: “π and κ descriptive measures 

present high levels of mean bias in presence of extreme values 

of prevalence and rater bias but small to null levels with 

moderate values”. The best behavior was observed with Bennet 

[30] and Martín and Femia [46] agreement measures for all 

levels of prevalence.” 

Cohen’s kappa model 

Let’s consider a square 3 by 3 (c by c or cxc) contingency table 

as the following with the judgments of the Rater A and Rater B 

about the membership or not to three categories simply coded 

as “1”, “2”, and “3”. The judgments of the Rater A are on the 

columns and those of Rater B are on the rows. 

 

Rater B 

Rater A Total 

“1” “2” “3”  

“1”    

“2”    

“3”    

Total     

 

In the cells there are the true probabilities of the joint judgment 

of the two raters with the subscript “i" for the rows and the 

subscript “j” for the columns; in the marginal row and column 

the “dot” replaces the pertinent subscript on which the sum has 

been done. Of course, the Latin “p” letter replaces the Greek 

one() in the case of the observed proportions, as it has been 

shown, between brackets, in the cell(1,1). Obviously, the 

numeration of the rows starts from the top and the numeration 

of the columns starts from the left. 

Considering that the true proportions (ii) on the diagonal of 

the above square contingency table represent the proportion 

of subjects in each category for which the two raters agreed on 

their assignment, the overall proportion of agreement is given 

by:  

c

ii
i

0  , being the observed agreement given by: 

c

ii
i

p p0  . 

The true proportion of the agreement expected by chance or 

under the assumption of raters independence (e) is given by 

the sum of the products of the corresponding rows (πi.)
 
and 

columns (π.i) marginal probabilities shown in the cells of the 

principal diagonal; so, we obtain: 
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 with i (i) the column (row) marginal 

and for the corresponding observed 

agreement by chance.  

In addition, it has to be reported that when row and column 

marginal are equal (first row marginal equal to the first column 

marginal, etc.), the contingency table is defined as 

“symmetrical”. Furthermore, we defined a symmetrical table as 

“uniform” when the rows and columns marginal are the same; 

then, a “uniform table” is by definition also symmetrical. 

In 1960, Cohen [32] critiqued the use of the observed 

proportion of agreement due to its inability to account for the 

chance agreement “resulting from a random choice of the 

categories by two raters”. 

To adjust for this, Cohen [32] proposed an agreement measure 

“corrected for chance” or, otherwise defined, “the degree of 

raters’ agreement in excess of chance”, given by: 

e

e

k 0

1

 






 (1) 

The kappa estimate from the observed data is: 

e

e

p p
k

p
0

0
1





 

The maximum value of kappa is 1, leading to a perfect 

agreement; of course, this case occurs in a 2x2 contingency 

table only when 12 = 21 = 0.  

It has to be immediately said that for an asymmetrical 

contingency table, the maximum kappa value cannot be equal 

to 1. Indeed, the maximum proportion of the observed 

agreement is equal to the sum of the minimum values between 

the two corresponding row and column marginal; namely: 

 

Consequently, the maximum kappa value reached depends on 

the marginal probabilities and it can be calculated as: 

max e
MAX

e

k
1

 






 

Of course, the p Latin letter replaces the Greek letter in the 

case of the observed values. 

Feinstein and Cicchetti [47] proposed to calculate Cohen’s 

kappa by using the maximum possible value of the observed 

agreement (pmax) rather than 1, in the denominator of the k 

formula. Thus, it is possible to determine what proportion of the 

maximum observable agreement is actually achieved by the 

calculated k value in the context of an actual agreement study.  

Furthermore, a kappa value of 0 indicates that the observed 

agreement is the same as that expected by chance, and the 

minimum value of kappa falls between -1.0 and 0.0. Landis 

and Koch [48] suggested that values of kappa above 0.60 

show “good to excellent agreement between the two raters' 

scores”, and values of 0.40 or less “show fair to poor 

agreement”. Particularly, Landis and Koch’s interpretation scale 

[48] of the kappa value is: <0.0 “No agreement”; 0.0 - 0.20 

“Slight agreement”; 0.21 - 0.40 “Fair agreement”; 0.41 - 0.60 

“Moderate agreement”; 0.61 - 0.80 “Substantial agreement”; 

0.81 - 1.0 “Perfect agreement”. So, since each class includes its 

upper limit, a “Substantial agreement” is for k values lower 

than 0.81. 

It has to be noted that the above Landis and Koch’s [48] 

definition of “Moderate agreement” for the class of 0.41 - 

0.60, has been reported as “moderately strong agreement” on 

page 435 of both editions of Agresti’s book [23], leading to 

an improved interpretation of the study results. 

It is worthwhile to be remembered also that the Svanholm’s 

scale [49], practically ignored in the scientific literature, set a 

higher threshold of 0.5 for the “Good agreement” (anything 

less being poor); this threshold is, in our opinion, more suitable, 

being in the middle between the no agreement (k = 0) and the 

perfect agreement (k = 1, a value reached only for 

symmetrical contingency tables). 

Interestingly, the parameter e is also between 0 and 1; 

particularly, it is equal to 0 when, in the case of a 2 by 2 

contingency table, 12(or 21) is equal to 1 with a perfect 

disagreement (0 = 0 and k = 0 ), and it is equal to 1 when 

11 (or 22) is equal to 1 with a perfect agreement (0= 1, 

leading to obtain an indeterminate form for the value of k 

equal to 0/0). 
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In addition, Fleiss et al. [50] have stressed the fact that kappa 

values may be significantly different from zero but not large 

enough to satisfy the investigator's desire for a satisfactory 

agreement, as it has been also reported by Bakeman et al. 

[51]. 

As a further relevant point, it is expected that two raters are 

unbiased or that the two (or more) raters classify the same 

proportion of items (or subjects) into the different categories of 

the considered qualitative variable. However, it has to be 

stated that the agreement between two (or more) raters it is 

not required to be “perfect”, but it is conceded that the 

agreement is less than perfect as long as the difference from 

the perfect agreement (k=1 or k=kMAX) can be considered not 

clinically relevant. In addition, in the scientific context, it is not 

possible to demonstrate a null difference of H0: k=1, as the 

expression of a perfect agreement. So, similarly to the non-

inferiority clinical trials, the null and alternative hypotheses 

reverse their role into a hypothesis of a difference (the 

maximum threshold beyond which there is no agreement) and a 

hypothesis of no difference, respectively. Then, the maximum 

difference allowed for considering two drugs “clinically 

equivalent” becomes the maximum difference allowed for 

considering two (or more) raters “pragmatically concordant” or 

“in an almost perfect agreement”. 

About this point, we have to disagree, at least from a practical 

point of view, with the second part of the affirmation reported 

in Choudhary and Nagaraja’s book [11] according to which “In 

certain situations, an assumption of no inter-rater bias appears 

reasonable. One is where the same rater rates a subject twice, 

as in a repeatability study, and the other is the case where we 

can draw a random sample of two raters from the available 

raters and use their ratings of the same subject. In both these 

cases, we can assume unbiasedness of two raters”. Indeed, we 

think that if we refer to the population of all available raters, 

even with similar knowledge and training, in practice some 

discrepancies can be expected. In any case, unbiased raters 

lead to the condition of “exchangeability” from which the intra-

class coefficient derives.  

Formula 1, or its sampling counterpart expressed in terms of 

observed proportions, can be re-written by replacing p0 and 

pe with their pij and becomes, after some simplifications, the 

12.5 formula on page 259 of the Choudhary and Nagaraja’s 

book [11] reported here for readers’ convenience:  

 

 
 

p p p p
k

p p p p p p
11 22 12 21

12 21 11 22 12 21

2

2




  
 

This formula is useful for considering that k = 0 only if the odds 

ratio of the 2 by 2 contingency table (OR = p11p22/p12p21) is 

equal to 1. In addition, it allows expressing Cohen’s kappa in 

terms of a multinomial distribution from which the Maximum 

Likelihood (ML) estimates can be calculated and their standard 

errors can be obtained by using the well-known properties of 

the ML estimators. 

In addition, Choudhary and Nagaraja’s book [11], to which the 

interested reader is referred, shows: (i) a further formulation of 

Cohen’s kappa that allows to explain the paradox of having a 

high observed agreement proportion with a low and even 

negative kappa value; (ii) a further parameterization useful for 

investigating the bounds of the kappa value in the case of a 

2x2 contingency table; (iii) the expression of kappa as the 

Concordance Correlation Coefficient introduced by Lin [52]; 

and (iv) the expression of Cohen’s kappa as an intraclass 

coefficient introduced in the case of multiple raters. Finally, an 

interesting formulation of Cohen’s kappa is shown in the case of 

the “agreement with a gold standard” for which the well-known 

sensitivity and specificity probabilities, in addition to the 

prevalence parameter of the interesting condition, have to be 

considered. In this case, when the sensitivity and the specificity 

are known, the kappa value is a function of the prevalence 

and, accordingly, it is possible to calculate its maximum value. 

For the above reported case of an observer's coding of events 

compared with a known, accurate standard, kappa would 

represent the reliability and the diagonal proportions of the 

agreement matrix would represent the rater's accuracy for 

individual codes [51]. However, according to Bakeman et al. 

[51] in the usual agreement study with fallible observers, “the 

tendency to make similar mistakes allows the interobserver 

kappa to be higher than the kappa estimating reliability, 

obtained by comparing a fallible to an infallible rater”. 

Finally, if “both raters' errors were random and independent, 

then the interobserver kappa will represent a lower bound of 

the reliability”. Many properties of Cohen’s kappa, together 
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with its relationship with other indices are reported in several 

Warrens papers downloadable from his Web site [53] to 

which the interested reader is addressed. 

Cohen’s kappa pitfalls 

Multiple factors influence the kappa value, such as the rater’s 

bias, the prevalence of the categories, and the number of the 

categories. 

It has to be immediately stated that an important assumption 

underlying the use of the kappa is that errors associated with 

raters are independent, as it has been stressed, among others 

by Thompson and Walter [54], Shoukri [55], and Brennan and 

Prediger [33]. 

Cohen’s kappa: raters bias effect: A “bias” between the raters 

A and B is present when the raters differ in assessment how 

often a condition occurs. When this occurs the marginal 

distributions of the raters are obviously unequal, leading to 

asymmetrical tables. So, the “bias” is the extent to which the 

raters disagree on the proportion of positive (or negative) 

cases, for a contingency table 2x2. In addition, the Bias Index 

(BI) is defined as the difference between the proportions of 

“Yes” of the two raters and it is estimated by the absolute 

difference between the marginal proportions of the first row 

and first column in the case of a 2x2 contingency table, or 

equivalently, by the difference between the proportions of the 

cells not lying on the principal diagonal of a 2x2 contingency 

table, usually defined as “b” and “c”, respectively. Namely, the 

bias index is calculated as: |b – c| / n, being “n” the number 

of the paired subjects to be rated. The absolute value of BI has 

a minimum of 0 when the cell proportions shown above are 

equal or the two marginal proportions are equal; a maximum 

value of 1 is reached when or one or the other of these two 

proportions is equal to 1. The presence of the bias increases 

the kappa value since it decreases the agreement by chance 

(pe). 

Byrt et al. [56] defined a “bias-adjusted kappa (BAK)” by 

averaging the original values in the cells not lying on the 

principal diagonal [m = (b + c)/2]. However, although derived 

from a different way, BAK is in fact Scott’s π [31] that differs 

from Cohen's kappa in terms of how pe is calculated. The 

presence of the bias between raters gives rise to the second 

kappa paradox, according to Feinstein and Cicchetti [47], 

consisting in the fact that when the bias is large, kappa is 

greater than when the bias is small or absent. Otherwise, in 

contrast to prevalence, the effect of bias is greater when 

kappa is small than when it is large [56]. So, just as with 

prevalence (see after), the magnitude of kappa should be 

interpreted in the light of the bias index. In addition, for fixed 

observed agreement between the raters, Cohen’s kappa 

penalizes raters with almost equal marginal compared to 

raters who produce different classification proportions, as it 

has been formally proved by Warrens[57]. Finally, it has to be 

remembered the possibility of calculating a theoretical value of 

Cohen’s kappa starting from the row and column marginal and 

the accuracy/inaccuracy values attributed to the raters, 

according to Gardner’s proposal [58] followed by Bakeman et 

al. [51] and by Bakeman [59]. Of course, in this case, the filling 

of the cells of the contingency table is based on the value of 

accuracy less than 1 for fallible raters. 

Cohen’s kappa: prevalence effect: Cohen’s kappa is 

influenced by the prevalence of the categories of the 

considered variable. For example, an observed proportion of 

agreement of 0.8 gives a kappa of 0.6 when the row and the 

column marginal are equal to 0.5 (without a prevalence effect) 

and a value of 0.375 when the row and the column marginal 

are equal to 0.80 and 0.20, respectively. Byrt et al. [56] firstly 

defined a “Prevalence Index” (PI) as the difference between 

the probability of “Yes” and the probability of “No”, estimated 

by the absolute difference between the proportions in the cells 

lying on the principal diagonal of a contingency table 2 by 2, 

usually indicated as “a” and “d”, respectively. Consequently PI 

= | a - d | / n, where “n” is the number of paired ratings. 

Disregarding the absolute value, PI takes values from -1 (when 

a = 0 and d = n) to +1 (when a = n and d = 0) and is equal 

to 0 when “Yes” and “No” are equally probable, i.e. when the 

average prevalence of “Yes” is 0.5. In fact, if the prevalence 

index is great (i.e. the prevalence of a positive rating is either 

very large or very small), the agreement by chance is also 

great and kappa is consequentially reduced, as it has been 

shown by Brennan and Silman [60]. 

Then Byrt et al. [56] defined a “Prevalence-Adjusted, Bias-

Adjusted Kappa (PABAK)” by replacing the observed values in 

the principal diagonal cells by their average [m = (a + d)/2]. 

Rather surprisingly, PABAK is the same as Bennett et al.’s S 

coefficient [30], but obtained through a different derivation. 
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Gjørup [61] proposed an estimate of the prevalence of 

positive diagnosis by summing the proportion of the cell “yes-

yes” with the mean of the proportions of the cells “yes-no” and 

“no-yes”. It has to be reported the Cicchetti and Feinstein’s 

proposal [62] of resolving the Cohen’s kappa paradoxes by 

calculating the observed proportions of positive and negative 

agreement. Particularly, for a 2x2 contingency table with “a” 

and “d” the observed frequencies in the cells on the principal 

diagonal, “b” and “c” those in the adjacent cells and “n” the 

total number of the observations, the observed proportion of 

positive agreement (ppos) is: ppos = 2a/(n + a - d), and the 

observed proportion of negative agreement (pneg) is: pneg = 

2d/(n - a + d). However, this solution does not reflect the 

effect of bias. 

Furthermore, Cicchetti and Feinstein’s indices [62] are closely 

related to Byrt et al.’s prevalence index [56], being ppos = (Po 

+ PI) / (1 + PI) and pneg = (Po - PI)/ (1 - PI). Indeed, it has to 

be endorsed the Cicchetti and Feinstein’s statement [62] that 

“no single omnibus index of agreement can be satisfactory for 

all purposes”. 

As a strategy for interpreting 2x2 agreement tables and 

reporting results, firstly the presence of bias should be assessed 

using Byrt et al.’s [56] Bias Index (BI) that it has to be 

“interpreted both in substantive terms (is this amount of bias 

important in this particular context?) and in terms of its effect 

on kappa”. Furthermore, in presence of a relevant BI, it has to 

be done an exhaustive investigation to discover its cause, and it 

may be inappropriate or unnecessary to quote only an index 

of agreement, but it would be preferable to report the Cohen’s 

kappa components reflecting the observed agreement, the bias 

index and the prevalence index. It has to be remembered the 

Sim and Wright’s suggestion [63]:“when comparisons are made 

between agreement studies it can be misleading to report 

kappa values alone, and it is recommended that researchers 

should also discuss the effects of bias and prevalence.” 

Cohen’s kappa: number of categories and marginal 

uniformity: Let’s consider 2x2, 3x3, 4x4 and, finally, 5x5 

uniform contingency tables. The same observed agreement 

proportion of po = 0.7(say) allows obtaining kappa values of 

0.4, 0.55, 0.6, and 0.625. This fact corresponds to require for 

the same kappa values a lower observed agreement 

proportion. Otherwise, for the same kappa value of 0.4, po is 

0.7, 0.6, 0.55, and, finally 0.52. As a further example let’s 

consider non-uniform rows (columns) marginal with 0.10 for all 

the marginal, except for the last equal to 1 minus the sum of 

the previous ones. In this case a kappa = 0.6 is obtained from 

po of 0.928, 0.864, 0.808, and 0.76. Finally, for sake of 

completeness, the same observed agreement proportion of 0.8 

allows to obtain kappa values of -0.1(1), 0.41176, 0.583(3), 

and finally, 0.6(6). So, it is very well-evident that increasing the 

number of categories allows having greater kappa values at 

the same value of the observed agreement proportion. Finally, 

the greater the non-uniformity of the marginal, the greater the 

observed agreement proportion (po) must be for obtaining 

satisfactory kappa values. 

Weighted kappa: In the case in which the categories are 

naturally ordered, it is immediate to diversify the level of the 

agreement/disagreement, being a disagreement between two 

adjacent categories of the contingency table less important 

than a disagreement between categories that are more distant 

from each other. 

So, Cohen [64] introduced the weighted kappa for a “nominal 

scale agreement” with an exemplification based on 

disagreement weights, being a weight equal to 0 given to the 

cells lying on the principal diagonal and values of 1 and of 3 

given to progressively more distant categories. Moreover, 

Cohen [64] introduced also the weighted kappa for an 

agreement scaling with a weight equal to 1 for the cells on the 

principal diagonal and smaller weights as the cells 

symmetrically move away from the principal diagonal.  

It has to be said that the main criticism against the weighted 

kappa is the fact that the weights can be arbitrarily chosen. 

However, very popular schemes are the so called “linear” and 

“quadratic” weights. The first scheme gives weights equal to i -

j / (I-1) consisting in the absolute difference between the 

number of the rows and the number of the columns divided by 

the number of the categories (I) minus one. In addition, 

according to the quadratic scheme, the weights are equal to (i 

–j)2 / (I-1)2, being the squared difference divided by the 

squared number of categories minus one. 

Warrens [65] stressed the fact that the quadratic weights are 

more frequently used, since, in this case, the weighted kappa 

can be interpreted as an intraclass correlation coefficient; then, 

Warrens [65] highlighted some interesting properties of the 
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weighted kappa, being Warrens’ paper [65] together with 

Cohen’s paper [64] very recommendable for readers 

interested in this topic. 

Variance of kappa and of weighted kappa 

The problematic aspects of this topic have been very well 

synthesized in the first sentence of the Fleiss et al.’s paper 

[66]:“Many human endeavors have been cursed with repeated 

failures before final success is achieved. The scaling of Mount 

Everest is one example. The discovery of the Northwest 

Passage is a second. The derivation of a correct standard error 

for kappa is a third.” The above text has been also reported 

by Kraemer et al. [67] by adding: “This wry comment by Fleiss 

et al. in 1979 continues to characterize the situation with 

regard to the kappas coefficients up to the year 2001, 

including not only derivation of correct standard errors, but 

also the formulation, interpretation and application of kappas.” 

The exact variance for the unweighted and weighted kappa 

has been shown by Everitt [68], even if the variance of the 

weighted kappa has been shown in a generally cryptic formula 

(formula 17, on page 101) with an “S” notation shortly defined 

as “S denotes the appropriate summation over the whole 

table”. In addition, the pertinent calculations were not detailed 

and it has been reported only the variance value for the 

considered example 0.004417, very similar to the value of 

0.004425 obtained from the approximate variance formula. 

According to Everitt [68], let’s define mij the absolute 

frequencies and wij the weights (indicating the level or 

seriousness of the disagreement and, of course, equal to zero 

for the diagonal cells in which there are the frequencies of 

agreement) of the ij cell (i-th row and j-th column for I rows and 

J columns, respectively); in addition, ri and cj are the marginal 

of the rows and of the columns, respectively, and, finally, N is 

the total sample size. So, using Everitt’s notation [68], the 

probability density function of the mij is given by: 

I J

i j
i j

ij I J

ij
i j

r ! c !

P(m )

m N!


 


 

In addition, if the marginal are considered fixed, the marginal 

distribution of a single mij can be shown to be a (central in the 

case of k = 0, under H0) hypergeometric distribution given by: 

   
     

i i j j
ij

ij i ij j ij i j ij
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However, according to Stevens [69], the above distribution has 

been previously shown by Yates [70] when marginal totals are 

fixed, provided that the entry into columns is independent of 

the entry into rows: 

Therefore, the mean and variance of mij are, respectively:  

   
 

i i j ji j
ij ij

r N r c N cr c
Mean(m ) ; Var(m )

N N N

 
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The covariance (Covar) between any two cells on the same row 

(mij and mij’, say) is: 

 
 

i j j ' i
ij ij '

r c c N r
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Otherwise, for any two cells on the diagonal (mij and mi’j’ for i 

= j, corresponding to mii and mi’i’), the covariance (Covar) is: 

 
i i i ' i '

ij i ' j ' ii i ' i '
r c r c

Covar(m , m ) Covar(m , m )
N N

 
2 1

 

that it is equal to the covariance between two diagonally 

adjacent opposed cells such as (mij’ and mi’j). 

Finally, for any two diagonally opposed cells (mij and mi’j’, say), 

the Covar is: 

 
i i ' j j '

ij i ' j '

r r c c
Covar(m ,m )

N N

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Then, according to Everitt [68] the mean of k and of kw are 

equal to zero, since: 

 e
e

E(k) E(p ) p
p

 
 0

1

1
,where E denotes the 

mathematical expectation and pe is fixed by the marginal 

totals. Now: 
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Therefore the expected value of k is zero. 
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The expectation of kw is given by:  
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And it is also equal to zero. 

Mielke et al. [71] wrote a Fortran program (VARKAP) for 

calculating the exact variance of the weighted kappa from 

which the calculation steps are more understandable and, in 

addition,considered contingency tables more than the 3x3 

table examplified in Everitt’s paper [68]. 

Of course, the program works also for the unweighted kappa 

which is a special case of the weighted kappa when the 

weights (wij) are equal to 1 for i  j and 0 otherwise. 

We translated Mielke et al.’s program [71] into SAS®/IML 

language [72] and also in the open source R language [73] 

and we obtained the same variance values at the sixths 

decimal figure shown in Mielke et al.’s example [71]. 

Furthermore, with the same programs we obtained 0.0042902 

instead of the value of 0.004417 reported by Everitt [68], 

perhaps owing to the computational inaccuracies of the 

computer programs written and used in the years around 

1970. It is questionable if the actual difference of about 13 

thousandths instead of 8 millionths is still sufficiently small to be 

considered also irrelevant to justify, together with calculation 

difficulties, the preference for the approximate variance. Of 

course, nowdays, the difficulties of calculation are outdated, 

but it has to be pointed out that the exact variance of kappa 

(weighted or not) has been proposed only for the case of k = 

0, as it is also reported in Mielke et al. [71], and, therefore, it 

is not useful for testing an hypothesis of at least an acceptable 

agreement, given by kappa values of 0.4, at least.  

Indeed, it has also to be said that a statistical null hypothesis 

test of k0=0 is rather not interesting and even unacceptable; in 

fact, the test must have a null hypothesis of a poor agreement 

in order to be rejected and, consequently, to conclude for a 

satisfactory enough agreement between the raters, according 

to the primary objective of an agreement study. Particularly, it 

has to be reported that k = 0.4 is generally considered the 

minimum threshold for a satisfactory agreement as it has been 

stressed by Everitt [68] and by Mielkeet al. [71], even if we 

strongly suggest a value of 0.5 in agreement also with 

Svanholm [49]. 

Mielke et al.’s formula [71] for the exact variance of the 

weighted kappa is:  
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Where, in addition to the “i" and “j”subscripts for the rows and 

the columns of the square contingency table, there are two 

other subscripts “k” for two terms and “l” for the fourth and last 

term between the square brackets. Furthermore, Ri (or Rj or Rk) 

and Cj (Ck or Cl) are the marginal frequencies of the rows and 

of the columns, respectively, and the summation is from 1 to r, 

being r the number of the rows that, obviously, for a square 

table, corresponds to the number of the columns. Apart from 

the term at the denominator outside the square brackets and 

for the first term inside that are the expression of the usual 

double summation on the rows and columns of a contingency 

table, the second and third term (between the square brackets) 

are the expression of a triple and a quadruple summation, 

respectively. Particularly, for the second term, the summation is 

done for all rows (“i" = 1 to r) and for all columns except for 

the case in which the subscripts “j” and “k” are equal; in 

practice, it has to program a double summation with one index 

(“j”, in this case) ranging from 1 to “r” – 1 and one another 

index (“k”, in this case) ranging from “j” + 1 to “r”.  

The same approach is followed for the third term between the 

square brackets; in this case the subscript “i" ranges from 1 to 

“r” – 1, while the subscript “j” ranges from “i” +1 to “r” and 

the subscript “k” ranges from 1 to r. The last term between the 

square brackets requires a much more complicated approach 

in which there are four summations with the subscript “i" ranging 

from 1 to “r” – 1, the subscript “k” ranging from “i" +1 to “r”, 
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the index “j” ranging from 1 to “r “– 1 and, finally, the index 

“l” ranging from “j” + 1 to “r”. 

Anyhow, the above outlined calculations are well understood 

(and also obtained) by reading a program written in 

SAS®/IML language [72] or by a program written in the open 

source software R [73] available from the authors. Curiously, it 

has to be said that the above reported value of 0.004417 for 

the exact variance of the weighed kappa in Everitt’s paper 

[68] has been also mentioned in Fleiss et al.’s paper [50] as: 

“Everitt (1968, p.102) found the exact variance to be 

0.004417, which would indicate that the expression given in 

Equation 9 somewhat underestimates the exact value. The fact 

that the above value of 0.004425 from the approximate 

variance is practically equal to the exact variance value of 

0.004417 (a difference of 8 millionths: note from the authors) 

supports the use of the approximate variance easier to 

calculate”.  

Furthermore, the values of the kappa approximate variance 

shown by Cohen [32] are overestimated and not correct, 

according to Fleiss et al. [50]. Indeed, Cohen [32] derived the 

variance of the kappa (the weighted kappa will be introduced 

later) by considering pe “as a constant” and, consequently, a 

fixed quantity and po as “if it were the population value”; in 

addition, the above assumption has been considered as 

adequate “ordinarily pe will not vary greatly relative to k, 

particularly with large n (i.e.,  300)”. Accordingly, the 

variance of po is po (1-po)/n and the kappa variance becomes 

the variance of po multiplied by the square of the constant 

value (1-pe) at the denominator. The square root of the 

variance is the kappa standard error given by: 
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That is the equation 7 of the Cohen’s paper [32]. However it 

has to be noted that the use of the Greek letter “” should be 

associated to the Greek letter “" instead of the Latin letter 

“p”. 

Accordingly to the increase of n, it is possible to assume that 

the k sampling distribution will approximate the Gaussian 

distribution with the consequent calculation of the 95% and 

99% confidence intervals by using the quantiles 1.96 and 2.58 

of the standard Gaussian distribution, respectively; then, the 

testing of two independent kappa coefficients or a kappa 

against an expected value can be carried out by means of an 

approximate Z-test. 

The formula for the approximate kappa variance from Fleiss et 

al. [50] is: 
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Where pi. are the rows marginal and p.i(p.j) are the columns 

marginal, respectively, p0 is the sum of the observed proportion 

of agreement (the sum of the proportions of the cells on the 

principal diagonal of the contingency table), and pe is the 

expected proportion of agreement by chance or in the case of 

a true independence or a true no agreement, corresponding to 

the sum of the proportions of the cells on the diagonal of the 

contingency table obtained by multiplying the corresponding 

rows and columns marginal proportions. 

In the case of testing Cohen’s kappa H0: k = 0, the above 

variance becomes the formula 14 of the Fleiss et al.’s paper 

[50]; namely: 
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In the case of the weighted kappa, the variance (formula 8 

Fleiss et al.’s paper [50])is: 

 
       

I J

w ij ij e i. . j e e
i je

Var(k ) p w p w w p p p p p
N p  

               


2 2
0 0 04

1 1

1
1 1 2

1

 

In the case of testing H0: kw = 0, the pertinent variance 

(formula 9 of Fleiss et al.’s paper [50])is: 
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Actually, Fleiss et al. [50] proposed firstly the asymptotic 

correct formula of the variance of the weighted kappa where 

wij are the weights for each cell of the contingency table since 

the unweighted kappa and its variance formulas are 

considered as a particular case of the weighted kappa.  
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The weights considered by Fleiss et al. [50] are equal to 1 for 

the cells on the main diagonal of the contingency table and are 

values arbitrarily chosen by the experimenter, assumed, 

without loss of generality, to lie between 0 and 1. In this case, 

the weights can be defined as “agreement weights” since their 

maximum values are on the “agreement cells” lying on the 

principal diagonal of the contingency table. It has to be taken 

into account that, for ordinal variables, a disagreement 

between adjacent rows or columns (class 1 vs. class 2, for 

example) is less serious that one between not adjacent rows or 

columns (class 1 vs. class 3, for example) or even more so 

between distant rows or columns (class 1 vs. class 4, for 

example). Of course, in the case of nominal qualitative 

variables without a natural order of the classes, the 

contingency table has to be appropriately built with rows 

(columns) in order of similarity. Apart from the previously 

reported variance formulas for illustrating their theoretical 

background, it has to be considered that in the sample size 

calculation, firstly it has to specify the kappa values under the 

null (k0) and alternative (kA) hypothesis, then the prevalence of 

the categories (rows and columns marginal) from which the 

proportion of the agreement by chance is calculated. Then, as 

a third step, it has to calculated the proportion of the observed 

agreement under the null (H0: p0) and alternative (HA: pA) 

hypothesis as:  

e ek( )    0 1  

Of course, the subscript “A” replaces the “0” in the case of the 

alternative hypothesis, and the Latin letter “p” replaces the 

Greek letter “” in the case of the observed values. Finally, as 

a fourth step, the cells of the contingency table must be filled 

under the null and the alternative hypothesis to calculate the 

corresponding kappa variances. It is very well evident that only 

in the simplest case of a 2x2 contingency table there is a 

unique reference table, given the rows marginal (r1, r2), the 

columns marginal (c1, c2) and the kappa value (k) from which 

the observed agreement proportion is calculated. Indeed, the 

proportions of the four cells (p11, p12, p21, and p22) can be 

obtained as: (i) p22 = p0 –p11 p22 = p0 – (r1 –p12) = p0 – r1 

+ p12; then since p12 = c2-p22, it is straightforward to obtain 

p22 = p0 – r1 + c2 – p22 p22 = (p0 – r1 + c2)/2. The 

remaining proportions are consequently: (ii) p11 = p0 – p22; (iii) 

p12 = r1 – p11; (iv) and, finally, p21 = c1 – p11. 

In the case of a symmetrical contingency table 3x3, the 

condition of dividing 0 proportionally to the rows (columns) 

marginal and, then,of dividing the disagreement in the cells 

outlying the principal diagonal proportionally to the rows 

(columns) marginal does not allow to obtain a unique table 

unless some other conditions are added such as the condition 

p12 = p21, p23 = p32, and p13 = p31, leading to a symmetrical 

pattern of the cells of the contingency table. So, with row and 

column marginal equal to 0.5, 0.3, and 0.2 leading to e = 

0.38, and with k = 0.4, we obtain p0 = 0.628 that can to be 

proportionally divided on the principal diagonal cells; namely 

0.628*0.5 = 0.314, 0.628*0.3 = 0.1884, and 0.628*0.2 = 

0.1256. Then, by dividing the disagreement proportion of 

0.186 (from the difference: 0.5 – 0.314) in the first row 

proportionally to the marginal as 0.186*0.3 / (0.3 + 0.2) and 

0.186*0.2 / (0.3 + 0.2), we obtain 0.1116 to be put in the 

cell(1,2) and 0.0744 to be put in the cell (1,3), respectively. 

The above values have to be put in the cell(2,1) and cell(3,1), 

respectively for the symmetry; since the sum: p11 + p12 +p13 

(0.314 + 0.1116 + 0.0744) equals the first row marginal of 

0.5, the sum: p12 + p22 (0.1116 + 0.1884) equals the second 

row marginal of 0.3, and, finally the sum: p13 + p33 (0.0744 + 

0.1256) equals the third row marginal of 0.2. Finally, the 

remaining cell(2,3) and cell(3,2) are filled with 0.  

The above calculations correspond to having written an 

algebraic system of six equations; namely, three equations for 

the fixed rows marginal, two equations for the fixed columns 

marginal (three minus 1, since the condition for the third column 

is implied in the previous three row conditions) and one 

equation for the condition that the sum of the proportions in the 

diagonal cells have to be equal to 0. So, in order to obtain a 

solution, the 9 equations have to be reduced to six by equaling 

two by two the proportions on the symmetrical cells out of the 

diagonal, for example. However, it is not guaranteed that the 

algebraic solution leads to a contingency table with the cells 

showing a symmetrical pattern. 

In addition, it may happen that all cells are filled by non-zero 

values, as it occurs for rows (columns) marginal of 0.4, 0.3 and 

0.3, leading to e of 0.34, and for k = 0.4, leading to 0 = 
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0.604. In this case, p11 = 0.2416, p22 = 0.1812, and p33 = 

0.1812, p12 = 0.0792, p13 = 0.0792, p21 = 0.0792, p23 = 0. 

0.0396, p31 = 0.0792, and p32 = 0.0396. It can be seen that 

p23 = p32 = 0.0396, are different from zero and that their 

sums are equal to the rows and columns fixed marginal.  

However, this approach can fail in some cases. For example, 

with row (column) marginal equal to 0.8, 0.1, 0.1 leading to e 

of 0.66, and with kappa = 0.4 giving 0 of 0.796, we obtain 

p11= 0.6368, p22 = p33 = 0.0796. Then, the disagreement in 

the first row equal to 0.1632 is equally split in the cell1,2 and 

cell1,3 with the consequence that 0.0816 + 0.0796 = 0.1612, 

a value greater than the fixed second and third row (column) 

marginal equal to 0.10.  

In any case, the above contingency table not fulfilling the 

condition of fixed rows (columns) marginal can be submitted to 

an iterative process by increasing the cell(1,1) and decreasing 

all other cells until the above condition is fulfilled. However, the 

3x3 contingency table obtained is, again, a not unique table 

fulfilling the conditions of the rows (columns) marginal and of 

the observed agreement given by the sum of the cells on the 

principal diagonal. 

For example, both the 3x3 tables (0.732 0.034 0.034; 0.034 

0.032 0.034; 0.034 0.034 0.032) and (0.732 0.068 0.000; 

0.000 0.032 0.068; 0.068 0.000 0.032) fulfill the condition of 

having the same rows (0.8, 0.1, 0.1) and columns (0.8, 0.1, 0.1) 

marginal and the condition of having the same observed 

agreement proportion of 0.796 or the same kappa value of 

0.4. 

It has also to be remembered the proposal of Gardner [58] 

followed also by Bakeman et al. [51] and by Bakeman [59] of 

filling the cells of the contingency table based on the accuracy 

less than 1 for fallible raters. Indeed, the above calculations 

are based on a perfect accuracy of the raters. 

So, starting from a cxc accuracy matrix of the rater “A” (Aic) 

with on the principal diagonal the accuracy values and on the 

remaining cells the complement to 1 of the accuracy divided by 

the number of the categories minus 1, and from a similar cxc 

accuracy matrix for the rater “B” (Bjc), and the rows (columns) 

vector of the category prevalence (c), it is possible to obtain a 

baseline matrix from which the value of kappa can be 

calculated. This quite laborious procedure is clearly shown in 

the downloadable Bakeman’s Technical Report [59] to which 

the interested readers are referred. 

It has to be noted that even if the approach with no fallible or 

fallible raters allows obtaining a unique agreement matrix, 

there is no guarantee that this matrix corresponds to the 

population matrix of the multinomial distribution from which the 

kappa value may have been generated.  

Furthermore, Gardner’s approach [58] and the “symmetrical 

approach” shown before lead to a cxc agreement matrix 

without considering the value of the kappa variance that it will 

be possible to calculate. In any case, there are several cxc 

agreement contingency tables fulfilling the main requirements 

of the fix rows (columns) marginal and of the kappa value (or 

of the observed agreement). 

Sample size calculation 

Sample size calculation according to Flack et al. [74]: In 

order to obtain a unique contingency table Flack et al. [74] 

introduced the criterion of selecting the table with the maximum 

asymptotic standard error proposed by Fleiss et al. [50] 

leading to a conservative sample size calculation.  

Flack et al.’s approach [74] was also followed by PASS® 13 

and PASS® 16 [75] in the procedures “Kappa Test for 

Agreement Between Two Raters”, described in Chapter 811, 

and “Confidence Intervals for Kappa", described in Chapter 

819, respectively. 

Flack et al. [74] considered the “large-sample standard error” 

formula given by Fleiss et al. [50] and concluded that, “given 

the marginal and the kappa value, the maximum variance 

value can be obtained by maximizing the double summation of 

the variance formula by placing all of the off-diagonal 

probability in the cells corresponding to the largest marginal 

and putting zero on the remaining off-diagonal cells”. In 

addition, “it has to minimize the single summation term that is 

subtracted from the first by maximizing the proportions in the 

cells corresponding to the smallest marginal”. Flack et al. [74] 

gave an example of symmetrical table with marginal (0.1, 0.2, 

0.3, and 0.4) and kappa = 0.8 from which it is easily obtained 

the disposition of the cell proportions in order to have the 

maximum of the kappa variance. 

We recommend a mathematical method based on the linear 

programming (LP, also called linear optimization) that allows to 

obtain a best outcome (such as maximum or a minimum) in a 
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mathematical model whose requirements are represented by 

linear relationships, as it has been stressed by Pratt and 

Hughes [76], which optimize (usually maximize or minimize) a 

linear objective function of many variables, subject to linear 

constraints. The constraints, in this case are given by the fixed 

rows and columns marginal and by the observed agreement 

proportion, fixed by the kappa values under H0 and HA (see 

Appendix A. Linear Programming). 

To this aim, it can be used the LPSOLVE subroutine in SAS®/IML 

of SAS® 9.4 [72] or the linear programming (LP) solver in the 

OPTMODEL procedure of SAS®/OR, reported by Pratt and 

Hughes [76]. Otherwise, it can be used the “lpSolve” R 

Package from Berkelaar et al. [77]. The package “lpSolve” is 

also used by the function N2.cohen.kappa. R in the package 

“irr” [78]. We have generalized this function in a program 

written in the open source R language to consider the full 

expression of the variance of Cohen’s unweighted and 

weighted kappa. In addition, we have reported the correct 

number of the sufficient constraints, together with the theory of 

the LP used in this particular context in the Appendix A. In any 

case, the interested readers can be referred to the almost 

exhaustive reference of Sallan et al. [79].  

However, it has to be noted that the algebraic solution of the 

system under the linear programming approach can lead to a 

situation, not acceptable from the point of view of an 

agreement study, consisting of zero values for some cells on the 

principal diagonal together with some, perhaps, relevant 

values in the “disagreement cells. It has to be said that it is not 

possible, from the theoretical point of view that the agreement 

is only for some classes of the variables with a complete 

disagreement for the remaining ones. The same is true if all 

disagreement is present in only a few cells of the contingency 

table, particularly if these cells are just those adjacent to the 

principal diagonal. 

It has also to be said that with the linear programming 

approach, it is possible to determine the contingency 

probability table with fixed rows (columns) marginal and the 

Cohen’s kappa value for obtaining any predetermined value 

of the variance. 

Sample size calculation according to Altaye et al. [87,89] 

and Donner et al. [92,94]: Furthermore, under a model 

parallel to the common correlation model used for the case of 

continuous variables that implies an equal correlation 

coefficient between any pair of variables, Donner and Eliasziw 

[80] proposed a “goodness of fitting (GOF)” approach to 

develop confidence interval and significance-testing 

procedures for the kappa statistic. Donner and Eliasziw [80] 

called their model “the common correlation model for 

dichotomous data” and developed it for dichotomous data and 

for two raters under the assumption that there is no “rater 

bias”, leading to uniform underlying success proportions of the 

two raters. 

Particularly, Donner and Eliasziw’s [80] “goodness of fitting” 

approach brings together the disagreement proportions and, in 

the case of a 2x2 contingency table, calculates the sum of the 

squared difference between the observed and expected 

proportions divided by the expected proportion. The resulting 

statistic, in the case of binary variables and two raters, has a 

limiting 2 distribution with one degree of freedom. It has to be 

noted that the Donner and Eliasziw’s approach [80] of putting 

together the disagreement proportions implies that it is possible 

to consider only the case of “agreement or not” disregarding 

the weighted kappa based on a disagreement gradually 

evaluated from slight to severe. 

Then, Donner and Eliasziw [80] show how to obtain the values 

of the lower and upper confidence limit of the kappa by 

resolving a cubic equation; similarly, it is also possible to solve 

for a single root the cubic equation for a one-sided 100(1 - a) 

% lower confidence limit. It has to be reported that the “GOF” 

approach gave conditional empirical coverages close to the 

nominal value from a Monte Carlo study. So, the “GOF” 

resulted to be superior to two methods proposed by Bloch and 

Kraemer [81], one derived by a “large sample standard error” 

and the other obtained by a “variance stabilizing 

transformation ”aimed to improve the accuracy of the 

confidence interval estimate. 

In addition, Donner and Eliasziw [82] showed how to use the 

goodness-of-fit test procedure for sample size calculations in 

the context of reliability studies. Particularly, it has to be 

considered the central 2 distribution with one degree of 

freedom under the null hypothesis and the non-central 2 

distribution and its non-centrality parameter with one degree 

of freedom under the alternative hypothesis. 
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So, the sample size (n) formula from Donner and Eliasziw [82] 

is: 
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Where l is the non-centrality parameter, - is the power and 

 is the statistical significance. 

Interestingly, the non-centrality parameter  for 1 degree of 

freedom is, simply, the squared sum of the 1-/2 and 1- 

percentiles of the Z-distribution. Then, for a significance level of 

0.0975 and a power of 0.80, corresponding to z1-/2 = 

1.959963985 and z1-= 0.841621234, l = 7.848885936 

(say 7.849); for a significance level of 0.0975 and a power of 

0.90, corresponding to z1-/2 = 1.959963985 and z1- = 

1.281221566, l = 10.50528378 (say 10.505 instead of the 

10.507, reported in the table on page 1518 of the Donner 

and Eliasziw’s paper [82]). 

Then, the approach described by Donner and Eliasziw [80,82] 

has been extended by Donner et al. [83] to testing the 

homogeneity of k independent kappa statistics of the intraclass 

form. In addition, Donner [84] provided sample size formulas 

and tables for designing studies comparing two or more inter-

observer agreement or concordance coefficients. Furthermore, 

always for the case of two raters and a dichotomous variable, 

Donner [85] showed the sample size requirements for a 

prespecified expected width or a lower limit of a confidence 

interval of the intraclass kappa statistic. Bahadur’s model [86] 

was subsequently applied by Altaye et al. [87] to modeling 

interrater agreement among multiple raters; particularly, the 

maximum likelihood estimators were obtained by a 

reparameterization of the Bahadur’s model [86] shown by 

George and Bowman [88]. Thereafter, Altaye et al. [89] 

extended their previous results by proposing a 2 goodness-of-

fit test based on the Dirichlet multinomial distribution for 

considering multiple raters and/or polytomous nominal 

variables. It has to be noted that the Dirichlet multinomial 

model expresses the joint distribution of the ratings and it has 

been used in the case of data obtained from a cluster sampling 

as it has been shown by Brier [90] and for making inference 

about the intraclass correlation coefficient in the context of twin 

studies as it has been shown by Bartfay et al. [91].  

Altaye et al. [89] reported that their model allows to have 

coverage and type I error proportion close to nominal (Table 2 

and Table 3) and to obtain a sample size formula for the 

required number of subjects and raters that provides 

predetermined power to test statistical kappa hypotheses. As 

the number of raters increases, the required number of subjects 

decreases, but this sample size saving rapidly diminishes after 

the accrual of five raters, as it is shown in Table IV of Altaye et 

al.’s paper [89]. This sample size calculation approach 

corresponds to an extension of the case of two raters with a 

binary outcome variable shown by Altaye et al. [87] to the 

case of multiple raters and to polytomous variables. A 

different formulation of the Dirichlet multinomial distribution 

that allows considering the case when the assumption of mutual 

independence does not hold is shown in the Appendix B. 

Dirichlet Multinomial Distribution. 

Donner and Rotondi [92] showed sample size requirements for 

interobserver agreement studies with a binary outcome in terms 

of the number of subjects (N) and raters (nr) that would allow 

the expected lower bound of a 95% confidence limit for 

Cohen’s kappa to be equal or greater than a required 

threshold. Of course, the required threshold has to be chosen 

for having an adequate agreement level. Donner and Rotondi’s 

approach [92] is based on the equivalence between Cohen’s 

kappa and the intraclass correlation coefficient obtained from 

a one-way random effects model shown by Fleiss [93], and a 

parsimonious model for correlated binary proposed by 

Bahadur [86]. Donner and Rotondi’s paper [92] shows two 

sample size tables: the first (Table 2) reports the number of 

subjects (N) “required to ensure that the expected lower limit of 

a 95% one-sided confidence limit for k·is no less than kL“ for 

four values of k0 (0.5, 0.6, 0.7, and 0.8), two values of kL (0.40 

and 0.60 for each k0 value), three values of (0.1, 0.3, and 

0.5), and four different number of raters (n = 2, 3, 4 and 5). 

Then, Donner and Rotondi’s Table 3 [92] reports, for the same 

values of  and number of raters, the “Expected lower limit of 

a 95% one-sided confidence limit” for k, with fixed sample 

sizes of 25, 50, 100, 150, and 200, and with k0 ranging from 

0.5 to 0.8 by step of 0.10. 

The sample sizes calculations were performed by means of the 

package “kappaSize” written in the open source R language 

by Rotondi [94]. The package “kappaSize” [94], in addition to 
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the sample size based on the lower confidence limit for k, 

allows to calculate a power base sample size for comparing 

two kappa (k0 under the null hypothesis and k1 under the 

alternative one) for 2 to 5 categories and for 2 to 5 raters 

(PowerBinary, Power3Cats, Power4Cats, and Power5Cats). 

These sample sizes will be compared with those obtained from 

Flack et al. ’s procedure [74] and from our two models leading 

to three sample size calculations in the results section in the case 

of two raters. It has to be stressed that the sample size 

obtained by PASS® 13/16[75] in the case of two raters 

corresponds to those calculated according to Flack et al. [74]. 

However, it has to be strongly pointed out that the Donner and 

Rotondi’s approach [92] does not “… ensure that the expected 

lower limit of a 95% one-sided confidence limit for k is no less 

than kL” since, firstly the above result is a probabilistic and not 

a deterministic event, and, secondly, the probability of 

obtaining the above result is only about 0.50, owing to the fact 

that the “confidence interval power” has not been taken into 

account. 

Indeed, with 2 raters and binary variables with marginal 

probabilities of 0.6 and 0.4, k = 0.6 under the null hypothesis, 

the “desired expected lower confidence limit” for kappa (kL) 

equal to 0.5 and  = 0.05, the required sample size is 299 

from the “CIBinary” function of the package “kappaSize” [94]. 

Then, the 95%CI of kappa of 966 samples out of 1,000 

simulated samples includes the kappa simulation parameter 0.6 

with an adequate coverage of 0.966, but the lower 95% CI 

was greater than the “desired expected lower confidence 

limit” of 0.5 in only 545 (54.5%) samples. Similar results have 

been obtained from another simulation case with 2 raters, 

multinomial variables (3 classes) with marginal probabilities of 

0.6, 0.3, and 0.1, k = 0.6 under the null hypothesis, the 

“desired expected lower confidence limit” for kappa (kL) equal 

to 0.5 and  = 0.05. 

The required sample size is 245 from the “CI3Cats” function of 

the package “kappaSize” [94]. Then, the 95% CI of kappa of 

964 samples out of 1,000 simulated samples includes the 

kappa simulation parameter 0.6 with an adequate coverage 

of 0.964, but the lower 95%CI was greater than the “desired 

expected lower confidence limit” of 0.5 in only 555 (55.5%) 

samples. 

So, in our opinion Donner and Rotondi’s suggestion [92] is not 

shareable, unless, after the first sample size calculation, a 

second iterative procedure is implemented to increase the first 

sample size until the area under a non-central 2 distribution 

and the required threshold kL has a sufficiently satisfactory 

value corresponding to the probability of obtaining the 

required result (CI power). Hong et al. [95] followed Donner 

and Rotondi’s approach [92] even if not openly stated. Indeed, 

they reported Donner and Rotondi’s Table 1 [92] with the same 

inaccurate 10.507 value instead of 10.505 as we shown 

before and produced nomogram for sample sizes calculation 

for interobserver agreement studies with only two raters for 

several prevalence patterns of 2, 3, 4, and 5 categories. 

However, Hong et al. [95] sample sizes calculation is based on 

the comparison between two agreement proportions instead of 

two kappa values. The motivation of their approach is 

“Because a large difference in kappa values would produce a 

negligible difference in proportion of agreement, it seems 

reasonable that the level of agreement in a sample size 

calculation is considered in terms of the proportion of 

agreement rather than a kappa value.” However, owing to the 

complex relationships between marginal probabilities, 

observed agreement proportions and kappa values, it is our 

opinion that researchers should be trained to infer in terms of 

the maximum achievable kappa value given the marginal 

probabilities and the relevant difference between two kappa 

values that it is sensible to postulate in an agreement study. 

The comparison between the sample sizes proposed by Hong 

et al. [95] and Flack et al. [74] or PASS®13/16 [75], is very 

similar to that between and Altaye et al. [87,89] and Donner 

et al. [92,94] and Flack et al. [74] or PASS®13/16 [75] 

considered in the results section. Hence, it will not be considered 

in detail. 

Interestingly, Von Eye and Mun [24] reported a “more general 

approach to power analysis for k, recently proposed by 

Indurkhya et al. [96], based on a Dirichlet multinomial 

distribution allowing to derive a 2-distributed statistic for the 

null hypothesis that k0 = 0 and a consequent sample size 

equation”. So, von Eye and Mun [24] showed a Table 1.4 

“Minimum Required Sample Sizes for  = 0.05 and p = 0.8 

(power)” adapted by summarizing two tables of Indurkhya et 
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al.’s paper [96]. However, Indurkhya et al.’s paper [96] is not 

actually present and, consequently downloadable, from the 

internet site of the journal. So, it not possible to understand the 

details of the proposed methods. However these sample sizes 

correspond only in the case of three categories to the sample 

sizes calculated according to Altaye et al. [87,89] and Donner 

et al. [92,94]. (See Appendix C. Sample Sizes shown in the von 

Eye and Mun’s book [24] for a more detailed discussion on this 

topic). 

Sample size calculation according to Choudhary and 

Nagaraja [18], and Cantor [97]: It has also to be remembered 

the very pragmatic presentation of the sample size calculation 

given by Choudhary and Nagaraja [18] without considering 

the problems of the different variances values, very likely 

because it has been shown only the case of two raters and two 

categories.  

They used a different formulation of the Fleiss et al. [50] 

formula of the kappa variance given by: 

 

This variance can be used, under the assumption of a Normal 

distribution in the case of large sample, to calculate 

approximate confidence intervals and to test the agreement 

hypotheses (H0: kk0 vs. H1: k>k0, for example). In addition, 

the sample size calculation formula (12.28 in the paragraph 

12.4.7 Sample Size Calculations) of Choudhary and Nagaraja’ 

book [18] is simply given by: 

 
 

z z
ˆN

k k

   




2

1 12

2
0 1

 

Where ̂2
 is an estimate of the kappa variance and 1-  and 

1-  are the (1-) and (1-) quantiles of the standard Normal 

distribution. It is interesting to note that Choudhary and 

Nagaraja’s suggestion [18] to take into account the sample size 

increases the further one moves away from the situation in 

which the rows (columns) marginal are equal to 0.5, is to use 

preliminary estimates of the prevalence of the classification 

classes and, then, to insert in the sample size formula the 

greater variance obtained by substituting k0 or k1. Indeed, for 

rows (columns) marginal of 0.6 and 0.4, k0 = 0.4 and k1 = 0.7, 

 = 0.025 and power = 0.80, the sample sizes calculated by 

using k0 and k1 are 76 and 46, respectively, instead of 66 and 

67 calculated according to Cantor [97] and PASS®13/16 [75], 

respectively. 

In addition, for rows (columns) marginal of 0.5 and 0.5, k0 = 

0.3 and k1 = 0.5, a = 0.025 and power = 0.80, the sample 

sizes calculated by using k0 and k1 are 179 and 147, 

respectively, instead of 169 and 168 calculated according to 

Cantor [97] and PASS®13/16 [75], respectively. So, it seems 

rather problematic to follow Choudhary and Nagaraja’s 

suggestion [18]. 

It has also to be reported the sample size calculation formula 

proposed by Cantor [97] in which the variances under the null 

and alternative hypothesis are separated together with their 

pertinent quantiles: 

 
 

Cantor

ˆ ˆz z
N

k k

   




2

1 0 1 1

2
0 1

 

It has to be stressed that this formulation that considers the 

variances under the null and the alternative hypothesis, is more 

usual in the sample size calculation settings. Finally, the sample 

size shown in Cantor’s paper [97] with the same conditions as 

the latter (rows (columns) marginal of 0.5 and 0.5, k0 = 0.3 

and k1 = 0.5, power = 0.80,) except for  = 0.05 is 131 (132 

rounding at the higher integer), 141 and 116 according to 

Choudhary and Nagaraja [18], and, finally, 133 from PASS® 

13/16 [75]. 

Aims of the Paper 

First and immediate aim of our research is to give the 

mathematical theory supporting Flack et al.’s proposal [74] by 

using the Linear Programming (LP) to directly obtain the 

contingency table with the maximum value of the kappa 

variance. Nonetheless, it has to be remembered that using LP, it 

is also possible to obtain several kappa variance values, such 

as the minimum or any predetermined value. The possibility of 

calculating the maximum and the minimum kappa variance 

values allows obtaining intermediate sample size values which 

could guarantee the actual feasibility of an agreement study. 

This point is fully considered in the Appendix A. Linear 
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Programming with an example of sample size calculation, to 

which readers are referred. 

Our second aim is to propose a generalization of the “common 

correlation model for dichotomous variables” to multinomial 

ones, leading to a new theoretic starting point for the sample 

size calculation procedure. Particularly, under this model, we 

have imposed two constraints: the first, less restrictive, is that 

only the cells on the main diagonal have a common correlation 

coefficient, leading to the “Partial Common Correlation Model 

(PCCM)” and the second, more restrictive, is that all cells of the 

contingency table have a common correlation coefficient, 

leading to the “Full Common Correlation Model (FCCM)”, Of 

course, these two models give two different sample sizes 

calculation procedures.  

Our third aim is to compare the sample sizes obtained from the 

above common correlation models with the sample sizes 

obtained according to Flack et al. [74] or PASS®13/16 [75], 

according to the “Goodness of fit” model of Altaye et al. 

[87,89] and Donner et al. [92,94], and for sake of 

completeness with the values calculated with the minimum 

kappa variance value. A further aim is to confirm the 

conservative characteristic of the sample sizes from Flack et al. 

[74] or PASS® 13/16 [75], by calculating the empirical power 

by means of a simulation study with samples having a sample 

size obviously calculated according to Flack et al. [74]. In 

addition, we have also calculated the coverage of the 95% 

Confidence Interval of the sample kappa to evaluate whether 

the conservative sample sizes guaranteed the nominal 

coverage or not. Finally, a further relevant aim of our paper is 

to give some suggestions for obtaining sample sizes suitable for 

the actual feasibility of an agreement study. 

METHODS 

The sample size calculation procedure requires the knowledge 

of the kappa variance given by Fleiss et al. [50]. It has to be 

observed that the variance is known and unique only if all joint 

probabilities  of the contingency table are determined. It is 

well known that for 2x2 contingency tables the “unity variance” 

of Cohen’s kappa is uniquely determined; so, it is possible to 

calculate the correspondent variance under the null (H0) and 

alternative (HA) hypothesis to be inserted into the sample size 

calculation formula. It has to be noted that the kappa variance 

is conveniently defined the “unity kappa variance”, since it is 

obtained with a sample of only one unity in order to remove 

the influence of the sample size on its value. Otherwise, for 

square tables cxc with c>2, the cell probabilities  are not 

uniquely determined, and it is not possible to calculate a unique 

Var (k) and, consequently, a well-defined sample size value. 

Flack et al. [74] calculated the sample size after having 

determined the cell probabilities in order that the kappa 

variance is a maximum under the null hypothesis (H0) and the 

alternative one (HA). However, the procedure of obtaining the 

cell probabilities configuration is not adequately described. 

We have shown how to obtain the maximum (and the minimum) 

of the kappa variance by resorting to the linear programming 

(Appendix A). More generally, it is possible to determine the 

cell probabilities for obtaining a particular value of the kappa 

variance such as its maximum or its minimum or any other 

particular value. Furthermore, for counterbalancing the fact 

that sample sizes calculated according to Flack et al. [74] can 

be too much conservative, we have calculated the sample sizes 

under two common correlated multinomial models by extending 

the common correlated binary model.  

Common Correlation Model: Contingency Tables 2x2. 

The common correlation model in the case of 2x2 contingency 

tables has been considered, among several authors, also by 

Bloch and Kraemer [81]. Particularly, given two identical 

correlated Bernoulli variables X and Y, the joint probabilities 

 of their corresponding contingency table are uniquely 

determined, given the correlation coefficient  between X and Y. 

Let’s represent the probabilities of a 2x2 table: 

  X  

  1 0  

Y 

1 
   

0 
   

  
  

 

 

With 
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Remembering that:  

We obtain: 

 

Remembering that:  

 

and that:  

 

We obtain: 

 

And consequently: 

 

 

 

In addition, Cohen’s kappa corresponds to the correlation 

coefficient between the two X and Y variables: k = . 

The demonstration is obtained by calculating, from the above 

reported probabilities, 0 and e and, then, the kappa value: 

 

 

 

Then, if the rows and columns marginal of a 2x2 contingency 

tables, are fixed, together with a fixed Cohen’s kappa value, 

the joint probabilities ij are uniquely determined. In other 

words, there is only one 2x2 contingency table with those 

particular rows and columns marginal and that particular 

Cohen’s kappa value. Consequently, also the kappa variance is 

uniquely determined. So, after having fixed the rows and 

columns marginal, the k0 value under the null hypothesis (H0) 

and the kA value under alternative hypothesis (HA), it is possible 

to calculate the corresponding unique variance values to be 

inserted in the sample size calculation formula. 

Common correlation model: contingency tables cxc. 

Let’s consider two correlated identical qualitative multinomial 

variables (X and Y) together with their joint probabilities 

square table. Taking into account the previously reported 

common correlation model, the cxc table can be reduced to a 

2x2 one. Particularly, the probability value (ij) of one cell has 

to be kept unchanged and the remaining cells on the c-1 

columns have to be collapsed by summing their values in order 

to obtain a cx2 table. Finally, the cx2 table can be collapsed 

to a 2x2 table by summing the respective cell probabilities on 

the c-1 rows. So, it will be possible to calculate the joint 

probability among the unchanged cell and the remaining cells 

obtained by summing the remaining cells (c-1 for the columns 

and c-1 for the rows, respectively). 

For example, starting from the cell(i,j) with probability ij(say, 

the first cell(1,1) with probability 11), the cxc table can be 

collapsed in the following way.  

  Y  

  j c-j  

 

X 

i 
 

) 
 

r-i 
  

 

  
  

 

 

The two indicator variables X* and Y* of this table are: 

  Y*  

  1 0  

 

X* 

1 
 

) 
 

0 
 

 

 

  
  

 

Then, the cell probability ij is: 

 

 

Let’s ρij be the correlation coefficient between X* and Y*. 

Remembering that: 

 

 

 

and 
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, 

we obtain: 

 

The above described operation of collapsing the original cxc 

table into a 2x2 table, has to be iterated for all remaining 

cells on the rows and, then, on the columns of the contingency 

table. 

In general, the probability value of each cell is given by: 

 

So, the joint probabilities ij can be expressed in terms of the 

rows and columns marginal probabilities together with their 

correlation coefficient. Obviously, the knowledge of the 

marginal probabilities and of the correlation coefficient allows 

calculating all joint probabilities of the table. 

In the case of a 2x2 contingency table, the two assumptions 

(knowledge of the rows and columns marginal together with the 

Cohen’s kappa value) allow to obtain a unique table. However, 

for contingency square tables more than 2x2, these two 

assumptions are not sufficient for obtaining a unique table. 

Indeed, it has to consider that there are 2c independent linear 

constraints; particularly, c constraints for the rows, c-1 

constraints for the columns and 1 constraint for the principal 

diagonal: 

 

 

 

So, starting from the (c-1)(c-1) degrees of freedom (ij, or 

equivalently ρij, that are free to vary) of a cxc contingency 

table with fixed marginal, by adding one more constraint due 

to the observed agreement proportion on the diagonal, the 

degrees of freedom (ij values actually free to vary) are: 

 

Then, the usual agreement conditions do not allow determining 

the cell probabilities in the case of square contingency tables 

with more than two rows (columns).  

Common correlation model (ccm) extensions 

Since the contingency tables more than 2x2 are not 

determined, we imposed some assumptions on their correlation 

structure in order to extend the models already proposed and 

to calculate their pertinent sample sizes, to be compared with 

those available by the current literature. 

Partial common correlation model (PCCM). Partial 

determination of the correlation structure by assuming a 

common correlation of the diagonal cells of the contingency 

table: It is sensible to assume that the agreement level of two 

raters in assigning the same subject to the same category is 

constant among the categories of the multinomial variable. So, 

the correlation coefficients among the cells on the principal 

diagonal will be the same, leading to: ρii=ρ for i=1,2,…c.. The 

further assumption of a common correlation coefficient  on the 

principal diagonal cells, allows writing the theoretical 

proportions of the observed agreement and of the agreement 

by chance as: 

 

From which: 

 

The above formula highlights that the correlation coefficient ( ) 

of the probabilities of the cells on the principal diagonal 

corresponds to the Cohen’s kappa, in analogy with what 

happens for the 2x2 contingency tables. The above formulation 

represents the first generalization to cxc square contingency 

tables of the “common correlated model for dichotomous 

variables”. 

Then, it is possible to calculate the joint probabilities (ij) on the 

principal diagonal given by: 
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In addition, these probabilities fulfill the appreciable property 

of respecting the order structure of the marginal probabilities; 

that is, if . 

Thanks to this assumption, the probability values of the cells on 

the principal diagonal are obtained by considering the 

structure imposed by the marginal probabilities and the kappa 

value. 

So, the not constrained joint probabilities are: 

 

Of course, this common correlation for multinomial variables 

has some consequences on the sample size calculation that will 

be described later in the “result section”. 

Full Common Correlation Model (FCCM). Full determination 

of the correlation structure by assuming a common 

correlation of all cells of the contingency table: By adding a 

second more restrictive assumption on the correlation 

coefficients , we can completely determine the 

correlation structure of the contingency table.   

Let’s assume that the correlations are the product 

of two components: one due to the raters, the 

constant , already considered in the first assumption and the 

other ( ) which expresses the correlation between the 

categories, considered pairwise, given by: 

 

This second assumption is:  

 

Then, substituting  in the πij previous formula of the PCCM, 

we have: 

 

 

So, all cell probabilities are determined: 

 

And by keeping the previously obtained results, we obtain: 

 

So, with this full model, obtained under a further restrictive 

condition in comparison to the first, it is possible to calculate the 

kappa variance, necessary for the sample size calculation, 

without resorting to LP. Furthermore, it is possible to 

demonstrate that also the weighted kappa is equal to the 

common correlation coefficient. 

Indeed, remembering that: 

 

 

In the case of the complete common correlation model, we 

have: 

 

So, we obtain:  

 

 

 

 

 

 

Recalling that: 
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We obtain: 

 

 

And, consequently: 

 

Finally, we have written a program in the open source R 

language that calculates the sample sizes according to Donner 

and Rotondi [92] for any number of raters without resorting to 

the functions, specific for each number of raters of the package 

“kappaSize” from Rotondi [94]. (Appendix D. R Code). 

RESULTS 

Variance 

Variance of 3x3 contingency tables under the Partial 

Common Correlation Model: Under the usual conditions of a 

symmetrical weight (wij) matrix and of uniform marginal 

probabilities, the variance formula is unchanged if each 

probability in position (i,j) is replaced by the corresponding 

probability in the symmetrical position (j,i). So, given a 

probability matrix M and its transpose , we obtain that: 

, being VarK (M) the “unity kappa 

variance” of the matrix M. In addition, given a matrix M, it is 

always possible to obtain a symmetrical matrix (  that 

keeps the same marginal, the same  and the same kappa: 

 

By using the Fleiss et al.’s [50] formula, the unity kappa 

variance of this matrix is: 

 

So, in conclusion, the symmetrical matrix 

(  keeps the same marginal, the same  

and the same kappa and, in addition, has the same unity 

kappa variance as the matrix M. 

By applying the above outlined symmetry condition to the 3x3 

probability tables that under the agreement condition of the 

PCCM have only one degree of freedom (only one cell is free 

to vary), we obtain that all cells are fixed, as it is shown in the 

following equation in which the term between the squared 

brackets is the number of the constraints imposed by the 

symmetry.  

 

Then, for c = 3 the degrees of freedom are zero. 

So, it exists only one 3x3 symmetrical matrix fulfilling all 

agreement conditions. Consequently, in this case, it is possible 

to obtain, without resorting to LP, the unique values of the 

variance under the null (H0) and the alternative hypothesis (HA), 

respectively, to be inserted in the sample size calculation 

formula.  

Variance for uniform cxc contingency table: It is possible to 

demonstrate that, in the case of uniform marginal, the unity 

variance of the unweighted kappa is unique. So, it is possible 

to use the same procedure above outlined for the 3x3 tables in 

order to calculate the pertinent sample sizes. 

Indeed, starting from the Fleiss et al. [50] formula of the 

unweighted kappa: 

 

Since the uniform marginal, we have:  for 

each i,j. 

Remembering that: 

 

And that  

 

And by considering each term within the curly brackets, we can 

write: 
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So, it is possible to notice that the above defined terms as A, B 

and C depend only on the parameters  that, in the 

agreement context are fixed “a priori”. So, also the unity kappa 

variance is fixed, since it does not depend on any of the joint 

probabilities (πij). 

Sample size calculation 

Preliminary considerations: The sample sizes have been 

calculated according to Flack et al. [74] (SS-Flack) with the 

maximum value of the kappa variance and also with the 

minimum value of the kappa variance (SS-Flack-min), to Altaye 

et al. [87,89] and Donner and Rotondi [92,94] (SS-Donner), to 

our method (A&C) based on the multinomial partial common 

correlation model both for a maximum and a minimum value of 

the kappa variance (SS-A&C-max, and SS-A&C-min), and, 

finally, to our method (A&C-full) based on the multinomial full 

common correlation model leading to have only one value of 

the kappa variance (SS-A&C-full). We considered four 

different scenarios of the rows (columns) marginal: from the 

uniform case to a noticeable non-uniform pattern. In addition, 

we considered eighteen null and alternative hypotheses given 

by three values of k0 = 0.4, 0.5, and 0.6 and respective kA 

values given by k0 + 0.05, k0 + 0.10, to 0.90 with steps of 

0.10, and, finally, with kA = 0.90 + 0.05. Finally, we 

considered a significance level of = 0.05 one-tailed and two 

tailed, and power = 0.80. So, there are seventy two scenarios 

of sample size calculations for each statistical significance level. 

Results about the sample size calculation will be shown by 

comparing SS-Flack and SS-Donner, SS-Flack and SS-A&C-

max and SS-A&C-min, SS-A&C-max and SS-A&C-min and, 

then, SS-A&C-max, SS-A&C-min and SS-A&C-full. The 

comparison between SS-Flack and SS-Flack-min has been 

reported just for sake of completeness, being the respective 

values so different. The Flack et al.’s approach [74] and the 

PCCM model do not allow to uniquely determine the cell 

probabilities and, consequently, to have only one value of the 

kappa variance. However, by resorting to LP, it is possible to 

calculate the maximum and the minimum value of the kappa 

variance, and consequently a maximum and a minimum value 

sample size. However, Flack et al.’s approach [74] has the 

wider variance interval and, obviously, also the wider sample 

size interval. Otherwise, PCCM model gives much narrower 

intervals that, in addition, are within the Flack et al.’s intervals 

[74]. 

FCCM allows to uniquely determining the cell probabilities, and 

consequently the kappa variance and the sample size. In 

addition, the sample size is equal or within the sample size 

values calculated according to the PCCM with the minimum and 

maximum value of the kappa variance and only within those 

calculated according to Flack et al. [74] with the minimum and 

maximum value of the kappa variance. 

In the case of uniform marginal probabilities, Flack et al.’s [74], 

PCCM, and FCCM approaches uniquely determine the kappa 

variance. So, the sample size is unique and the same for the 

three models. Regarding the PCCM for 3x3 tables, we 

demonstrated that the kappa variance is unique and, 

consequently, there is only one sample size value that is, in 

addition, equal to the sample size obtained with FCCM. In the 

case of uniform marginal probabilities, SS-Donner are always 

greater than the sample sizes calculated according to the other 

methods, perhaps owing to the fact that they are calculated for 

assessing a condition of agreement or not instead of a 

differentiated agreement assessed by the other procedures. 

The case of marginal non-uniform probabilities gives 

diversified results that will be detailed later. 

Sample sizes. Contingency tables 2x2: Table SS1 shows the 

sample sizes for the case of two raters and 2x2 contingency 

tables at a significance level of =0.05 one-tailed and two-

tailed, respectively and power =0.80. Particularly, Table SS1 
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shows the k0 and kA values, the rows (columns) marginal and the 

four previously reported sample sizes (SS-Flack, SS-Donner, 

SS-A&C-max, SS-A&C-min, and SS-Flack-min). 

After having found the required null (k0) and alternative (kA) 

hypothesis on the first two columns on the left, it has to select 

the appropriate pattern of the rows (columns) marginal on the 

next two columns on the right; then, it is possible to read for = 

0.05 one-tailed and two tailed, the above reported five 

sample sizes (SS-Flack, SS-Donner, SS-A&C-max, SS-A&C-min, 

and SS-Flack-min). So, it is possible to choose among the SS-

Flack, SS-A&C-max, and SS-A&C-min the sample size more 

suitable for the actual feasibility of the agreement study. 

Indeed, SS-Donner has to be considered only in the 

“agreement or not” case. Even if SS-Flack-min values are 

extremely more appealing, their choice is not recommended 

since they are at their minimum, leading to obtain lower and 

even much lower empirical power values. The SS-A&C-full 

calculated according to the FCCM are not been reported in this 

table and in the other sample size tables since they are equal 

to SS-A&C-max or less than a few units; furthermore, a 

program in the free source language R for their calculation has 

been reported in Appendix D. 

Comparison between SS-Flack and SS-Donner: By combining 

the two significance levels for a total of 144 cases, the 

comparison between SS-Flack and SS-Donner gives a 

difference mean of 2.71 (31.45, for the absolute difference), 

median of -12 (14, for the absolute difference) and a mean 

absolute percent difference between 14.87 and 20.11% 

depending on whether the minimum or the maximum sample 

size value is placed in the denominator. SS-Flack are equal in 

one case (0.7%), greater in 22 cases (15.3%) and lower in the 

remaining 121 ones (84%). The above outlined differences 

increase from the one-tailed to the two-tailed significance 

level.  

Particularly, the comparison between SS-Flack and SS-Donner 

gives a difference mean of 0.83 (28.17, for the absolute 

difference), median of -11.5 (13, for the absolute difference) 

with a mean percent absolute difference between 15.67-

21.58% in the case of  = 0.05 one-tailed and a difference 

mean of 4.59 (34.74, for the absolute difference), median of -

13 (14.5, for the absolute difference) with a mean percent 

absolute difference between 14.07-18.65% in the case of = 

0.05 two-tailed. 

Then, considering the increasing non-uniformity, it has to be 

stressed that in the case of uniform marginal and of the 0.6, 

0.4 symmetrical marginal, SS-Flack are always lower than SS-

Donner. Otherwise, SS-Donner are lower in the case of a 

greater non-uniformity (0.8, 0.2 and 0.9, 0.1), and of the 

greatest sample sizes for the hypotheses with k0= 0.4 and kA = 

0.45 or kA = 0.50, k0= 0.5 and kA = 0.55 or kA = 0.60, and 

k0= 0.6 and kA = 0.65.  

In the case of uniformity, the comparison between SS-Flack and 

SS-Donner gives a difference mean of -19.19 (19.19, for the 

absolute difference), median of -12.5 (12.5, for the absolute 

difference) with a percent difference mean between 16.48-

22.43%. Of course, being the mean of the difference and the 

mean of the absolute difference the same, all SS-Flack are 

lower than SS-Donner. 

Then, considering the degree of non-uniformity of the marginal, 

there is a difference mean of -17.72 (17.72, for the absolute 

difference), median of -13.5 (13.5, for the absolute difference) 

with a percent difference mean between 16.42-22.61% in the 

case of a little non-uniformity with marginal equal to 0.6 and 

0.4. In this case 8 SS-Flack values out of 36 (22.2%) are 

greater than SS-Donner ones and one value is the same. 

The differences are lower in the case of the relevant non-

uniformity of 0.8 and 0.2, being the difference mean of 1.39 

(20.44, for the absolute difference), median of -10.0 (13.0, for 

the absolute difference) with a mean percent absolute 

difference between 13.89-18.84%.  

Finally, in the case of an extreme non-uniformity (0.9, 0.1), the 

difference means are greatest with a difference mean of 

46.39 (68.44 for the absolute difference), median of -11.0 

(20.0, for the absolute difference) with a mean percent 

absolute difference between 12.69 and 16.56%. In this case, 

fourteen SS-Flack values out of 36 (38.9%) are greater than 

SS-Donner ones. The above results hold also for SS-Flack-min, 

since for the 2x2 contingency table, the variance is unique. 

Comparison between SS-Flack (SS-Flack-min) and SS-A&C-

max ( SS-A&C-min): SS-Flack and SS-A&C-max are always 

the same, being unique the “unity” kappa variance in the case 

of 2x2 contingency tables. Hence, SS-Flack-min and SS-A&C-
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min are also the same, and so it is between SS-Flack and SS-

Flack-min and between SS-A&C-max and SS-A&C-min. 

Comparison between SS-A&C-max and SS-Donner: Of 

course, the comparison between SS-Donner and SS-A&C-max 

(SS-A&C-min) gives the same results as that between SS-Flack 

and SS-Donner. 

Comparison between SS-A&C-max, SS-A&C-min and SS-

A&C-full: Since the probability table 2x2 is unique, SS-A&C-

max, SS-A&C-min and SS-A&C-full are all the same. 

Sample sizes. Contingency tables 3x3: Table SS2 shows the 

sample size results for 3x3 contingency tables at a significance 

of 0.05 one-tailed and two-tailed, respectively. 

Comparison between SS-Flack and SS-Donner: By combining 

the two significance levels for a total of 144, the comparison 

between SS-Flack and SS-Donner gives a difference mean of 

25.37 (36.00, for the absolute difference), median of -4 (8, 

for the absolute difference) with a percent difference mean 

between -8.79 and -12.23% (13.38 and 17.33 for the percent 

absolute difference) depending on whether the minimum or the 

maximum sample size value is placed in the denominator. SS-

Flack are greater in 45 cases (31.25%), equal in three cases 

(2.08%) and lower in the remaining 96 ones (66.67%). 

The differences increase from one-tailed case with mean of 

21.38 (median -4, mean of the percent difference from -9.85 

to -14.04%), and mean of the absolute difference of 31.63 

(median 8, mean of the percent difference of 14.25 to 

18.92%) to the two-tailed case with mean of 29.38 (median -

8.5, mean of the percent difference from -7.72 to -10.42%), 

and mean of the absolute difference of 40.38 (median 9, 

mean of the percent difference from 12.51 to 15.74%). 

In the case of uniform marginal, SS-Flack are always lower 

than SS-Donner. Otherwise, in the case of non-uniformity 

increasing and of the greatest sample sizes for the cases with 

k0= 0.4 and kA = 0.45 or kA = 0.50, k0= 0.5 and kA = 0.55 or 

kA = 0.60, and k0= 0.6 and kA = 0.65, SS-Donner are lower. 

Particularly, in the case of uniformity, the difference mean is -

10.94 (median -8, mean of the percent difference ranging 

from -15.7 to -21.48) and the mean of the absolute and 

percent differences are: 10.94, 15.7% and 21.48% (median 

of 8). 

Then, for the first step of non-uniformity (0.50, 0.25, 0.25), the 

difference mean is 13.39 (median -3, mean of the percent 

difference ranging from -9.82 to -13.54) and the mean of the 

absolute differences is of 20.11 (median of 6; mean of the 

percent absolute difference ranging from 12.81% to 16.71%). 

The differences increase at the second non-uniformity step 

(0.60, 0.30, 0.10), being the difference mean 53.22 (median 

1, -2.71% and -4.15%) and the absolute mean 57.94 (median 

7, 12.67% and 15.52%). The differences decrease at the 

greatest non-uniformity (0.80, 0.10, 0.10) since the difference 

mean is 45.83, (median -2.5, -6.92 and -9.75%) together with 

the absolute mean of 55.0 (median 11, 12.33% and 15.63%). 

Of course, the above differences are much more relevant if we 

consider SS-Flack-min. 

Comparison between SS-Flack and SS-A&C-max: SS-Flack 

and SS-A&C-max are equal in the case of uniformity of rows 

(columns) marginal. Otherwise, SS-Flack are greater in 104 

cases (72.22%) except for the four cases of k0= 0.4 and kA = 

0.90 or kA = 0.95, k0= 0.5 and kA = 0.95, and k0= 0.6 and kA 

= 0.95 at  = 0.05 one-tailed, in which the very small sample 

sizes are the same. Globally, the difference mean is 27.92 

(median 2, percent difference meanfrom5.43% to 6.05%) with 

the mean of the absolute differences of 27.93 (median 2, 

percent difference meanfrom5.44% to 6.05%). As usual, the 

differences increase from the one-tailed case with mean of 

24.4 (median 2, 5.20% and 5.80%) to the two-tailed case with 

mean of 31.4 (median 3, 5.67% and 6.31%). For these sample 

sizes the raw and absolute differences are the same since SS-

Flack are greater than or equal to SS-A&C-max. In the cases 

of the non-uniformity, but with two equal marginal (0.50, 0.25, 

0.25, and 0.80, 0.10, 0.10), difference means are of 22.36 

and 29.83 (median 2.5 and 4, respectively) with percent 

difference mean of 5.20-5.54% and of 4.34-4.56% 

depending on the denominator, respectively. 

Greater differences have been found in the case of a greater 

non-uniformity with all three marginal different (0.60, 0.30, 

0.10) with mean of 59.5 (median 8) and means of the percent 

difference from 12.19 to 14.11%. 

Of course, the sample sizes calculated by using the minimum 

kappa variance value (SS-Flack-min) are much lower than those 

calculated under the approach based on the maximum kappa 

variance value(SS-Flack). Indeed, these sample sizes have been 

shown in the tables just for giving the idea of the results 

obtained at the opposite extreme side of the extremely 
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conservative approach proposed by Flack et al. [74]. Actually, 

it is sensible to think that the “optimum sample size” is between 

these two extreme values, perhaps as their mean. 

Particularly, the comparisons between SS-Flack and SS-Flack-

min give a difference of 0 in the case of marginal uniformity, 

as a further confirmation of the uniqueness of the probability 

matrix in this case with, consequently, a unique variance value. 

Otherwise, SS-Flack are always greater than SS-Flack-min with 

a percent difference of 35.59% (min = 0, Q1 = 9.38%, 

median = 36.47%, Q3 = 48.33%, and max = 93.36%). 

The differences increase from the one-tailed case with mean 

178.9 (median of 13.5) and percent difference means of 

35.23% and 128.9% to the two-tailed case with mean 229.1 

(median 18.5) and percent difference means of 35.95% and 

138.97%. As usual, the differences increase as the non-

uniformity increases: in fact, mean values are of 112.5 (median 

15, percent differences are from 29.34% to 42.73%, 

depending on the maximum or minimum value placed in the 

denominator) in the case of marginal equal to 0.50, 0.25, 

0.25, of 200.6 (median 29, percent differences are from 

40.9% to 69.9%) in the case of marginal equal to 0.60, 0.30, 

0.10, and of 503.2 (median 72, from 72.1% to 423.2%) in the 

case of marginal equal to 0.80, 0.10, 0.10. The comparison 

between SS-Flack and SS-A&C-min is the same as the 

comparison between SS-Flack and SS-A&C-max, since in the 

case of 3x3 tables there is a unique variance value under the 

common correlation multinomial model for calculating SS-A&C 

and, consequently SS-A&C-max are equal to SS-A&C-min. 

Comparison between SS-Donner and SS-A&C-max: The 

comparison between SS-Donner and SS-A&C-max (or SS-A&C-

min, being the two SS-A&C all the same) gives a mean of the 

absolute difference of 14.45 (median 8, mean percent of 14.4 

and 19.4%) and a difference mean of 2.54 (median 7, 13.8-

18.8%), being 128 SS-Donner values (88.9%) greater than SS-

A&C-max, fifteen lower and one equal in the case of 0.6, 0.3, 

0.1 with k0 = 0.5 and kA = 0.55, at  = 0.05 one-tailed. The 

(absolute) differences increase a little from the one-tailed case 

with a mean 3.07 (median 6.5, 14.67% and 20.4%) together 

with means of the absolute and percent differences of 13.15, 

15.21% and 20.96% (median 8) to the two-tailed case with 

mean of 2.03 (median 7, 12.98% and 17.32%) together with 

mean absolute and percent differences of 15.8, 13.57% and 

17.94%. 

In the case of marginal uniformity, there is a difference mean 

of 10.9 (median 8), percent difference mean from 15.7% to 

21.5%; being all SS-Donner greater than SS-A&C-max, raw 

and absolute differences are the same.  

The differences are smaller for the case of 0.50, 0.25, 0.25 

marginal with difference mean of 8.9 (median of 4), percent 

difference mean from 14.62% to 19.6%, depending on the 

denominator; being all SS-Donner greater than SS-A&C-max 

the raw and absolute differences are the same.  

The differences are, again, smaller for the case of 0.60, 0.30, 

0.10 marginal with difference mean of 6.3 (median 5, 14.2% 

and 19.3%) together with the mean of the absolute differences 

of 9.2 (median 5) and mean percent absolute difference from 

14.3 to 19.5%. Finally, the greatest differences are for the 

case of 0.80, 0.10, 0.10 marginal in which there are some SS-

Donner lower than SS-A&C-max; indeed, the difference mean 

is of -16.0 (median 6, 10.8% and 14.9%) together with a 

mean of the absolute differences of 28.7 (median 11) and 

means of the absolute percent differences of 12.9-17.2%. 

Comparison between SS-A&C-max, SS-A&C-min and SS-

A&C-full: Since the probability table 3x3 is unique, SS-A&C-

max, SS-A&C-min and SS-A&C-full are all the same. 

Sample sizes. Contingency tables 4x4: Table SS3 shows the 

sample size results for the case of two raters and 4x4 

contingency tables at a significance level of =0.05 one-tailed 

and two-tailed, respectively. 

Comparison between SS-Flack and SS-Donner: By combining 

the two significance levels for a total of 144 cases, the 

comparison between SS-Flack and SS-Donner gives a 

difference mean of 38.79 (45.53, for the absolute difference), 

median of -2 (6, for the absolute differences) with a mean 

percent of the absolute differences between 13.38% 

and16.69%.SS-Flack are greater in 58 cases (40.28%), equal 

in three (2.08%) and lower in the remaining83 (57.6) ones. The 

above outlined differences are greater for the two-tailed 

significance level. Particularly, the comparison between SS-

Flack and SS-Donner gives a difference mean of 33.42 (39.89, 

for the absolute differences), median of -2.0 (6, for the 

absolute difference) with percent difference means of -4.94% 

and -7.1% (13.9% and 17.6% for the means of the percent 
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absolute differences) in the case of  = 0.05 one-tailed. There 

is a difference mean of 44.18 (51.18, for the absolute 

difference), median of -2 (7 for the absolute difference) with a 

percent difference mean of -6.24% and -4.58% (12.79% and 

15.79% for the absolute percent differences) in the case of = 

0.05 two-tailed. 

In the 36 cases of uniform marginal SS-Flack are always lower 

than SS-Donner; in addition, SS-Flack are lower in another 47 

cases (total of 83, 57.6%). Then, in the case of non-uniformity 

and of the greatest sample sizes for k0= 0.4 and kA = 0.45 or 

kA = 0.50, k0= 0.5 and kA = 0.55 or kA = 0.60, and k0= 0.6 

and kA = 0.65 SS-Donner are lower in 58 (40.3%) cases. This 

pattern occurs at greater differences between k0 and kA the 

more rows (columns) non-uniformity increases ranging from 

0.40, 0.30, 0.20, 0.10 to 0.70, 0.10, 0.10, 0.10. Finally there 

are three cases of equality when k0= 0.4 or 0.5 or 0.6 and kA 

= 0.80. 

Particularly, in the case of uniformity, the mean is -8.03 

(median -6, mean of the percent difference ranging from -11.5 

to -19.23; being all SS-Flack lower than SS-Donner, the raw 

and absolute differences are the same. 

Then, for the first step of non-uniformity (0.40, 0.30, 0.20, 

0.10) the mean is 49.97 (median 2, mean of the percent 

difference ranging from 13.48 to 15.59) and the mean of the 

absolute and percent differences are: 52.58, (median of 5 with 

the mean of the percent absolute difference ranging from 

12.9% to 15.75%. The differences increase at the second non-

uniformity step (0.60, 0.20, 0.10, 0.10), being the mean 67.56 

(median 3, 1.59% and 1.56%) and the absolute mean 70.5 

(median 7, 13.56% and 16.52%).  

The differences decrease at the greatest non-uniformity (0.70, 

0.10, 0.10, 0.10) since the mean is 45.69, (median 5.0, -4.13 

and -5.97%) together with the absolute difference mean of 

51.0 (median 7.5, 12.47% and 15.28%). 

Comparison between SS-Flack and SS-A&C-max: SS-Flack 

and SS-A&C-max are equal in the 36 (25.0%) cases of 

uniformity of rows (columns) marginal. Otherwise, SS-Flack are 

always greater (108 cases; 75.0%) with a difference mean of 

40.56 (median = 3) and means of the percent difference of 

9.29 and 10.85%. Being SS-Flack always greater (or equal) 

than SS-A&C-max, the raw and absolute differences are the 

same. 

The differences increase from the one-tailed to the two-tailed 

significance level. 

Particularly, from a mean (row and absolute) of 35.53 (median 

3) and means percent difference of 9.21 and 10.74% for the 

one-tailed case, to a mean (row and absolute) of 45.58 

(median 4) and means percent difference of 9.37 and 10.96% 

for the two-tailed case. In the case of uniformity, SS-Flack and 

SS-A&C-max (SS-A&C-min) are equal. 

In addition, the differences increase from the lower non-

uniformity (0.40, 0.30, 0.20, 0.10) with a difference mean of 

55.4 (median of 7.5 and percent difference meanof14.84-

17.63%) to the intermediate non-uniformity of 0.60, 0.20, 

0.10,10 with a difference mean of 67.3 (median of 9.0 and 

percent difference mean ranging from 14.71 to 17.43%); then, 

there is a decrease with a difference mean of 39.5 (median of 

5.5 and percent difference meanfrom 7.63 to 10.08%) in the 

case of marginal equal to 0.70, 0.10, 0.10 and 0.10. Being 

SS-Flack greater than or equal to SS-A&C-max (SS-A&C-min), 

the comparison between SS-Flack and SS-A&C-min are similar 

to the comparison between SS-Flack and SS-A&C-max, since 

the difference between SS-A&C-max and SS-A&C-min is very 

limited, being the mean of the differences equal to 1.12 (min, 

Q1, median, and Q3 equal to 0 and max = 19.0). Of course, 

SS-Flack-min, calculated by using the minimum kappa variance 

value, are much lower than those calculated under the 

approach based on the maximum kappa variance value (SS-

Flack), apart from the case of the uniformity in which the 

sample sizes are the same. Indeed, the difference mean is 

177.8 (min = 0, Q1= 1.50, median = 15.0, Q3 = 103.0, and 

max = 2223.0). 

Comparison between SS-Donner and SS-A&C-max: The 

comparison between SS-Donner and SS-A&C-max gives a 

difference mean of 1.76 (median 5, 12.92%-17.38%) and a 

mean absolute difference of 10.12 (median of 6, 13.5 – 

17.98%), being 122(84.7%)SS-Donner greater than SS-A&C-

max, 19 (13.2) lower, and three equal in the case of 0.7, 0.10, 

0.1, 0.10 with k0 = 0.4 and kA = 0.60 in the one-tailed and 

two-tailed case and in the case of 0.4, 0.3, 0.2, 0.1 with k0 = 

0.4 and kA = 0.50 at  = 0.05 two-tailed. 

The differences decrease from the one-tailed to the two-tailed 

significance level. Particularly, from a mean (row and absolute) 

of 2.11 (median 5) and a percent difference mean from 13.35 
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to 18.60% for the one-tailed case, to a mean (row and 

absolute) of 1.40 (median 6) and a percent difference mean 

from 12.18 to 16.14% for the two-tailed case. In the case of 

uniformity, SS-Donner and SS-A&C-max (SS-A&C-min) differ of 

a mean of 8.3 (median of 6, percent from 14.47% to 

19.23%). In addition, at the lower non-uniformity (0.40, 0.30, 

0.20, 0.10) there is a difference mean of 5.47 (median of 5 

and percent difference mean ranging from 13.64 to 18.24%); 

then, for the intermediate non-uniformity of 0.60, 0.20, 

0.10,10 there is a decrease with a mean of -0.27 (median 4.5, 

percent difference means of 14.41 and 16.91%).There is a 

further decrease with a difference mean of -6.19, (median of 

5 and percent difference mean ranging from11.16 to 

15.12%)in the case of marginal equal to 0.70, 0.10, 0.10 and 

0.10. Being SS-A&C-max very similar to SS-A&C-min, as 

already reported, the differences between SS-Donner and SS-

A&C-min are practically the same. 

Particularly, considering all 144 results together, the difference 

mean is 2.88 (median of 6; 13.24% - 17.37%) together with a 

mean of the absolute differences of 10.0 (median of 10.74; 

13.73% to 18.32%), being SS-Donner greater than SS-A&C-

min in 126 cases (87.5%), lower in only 16 cases (11.11%) 

and equal in two cases (1.39%) with marginal of 0.7, 0.10, 

0.1, 0.10 with k0 = 0.4 and kA = 0.60 in the one-tailed and 

two-tailed case. 

The differences are practically the same for the one-tailed 

case and the two-tailed case: indeed, there is a mean of 3.08 

(median 5, 13.93-19.02%) with mean absolute and percent 

difference of 9.11 (median 6), means percent of 14.2% and 

19.18% for the one-tailed case and a mean of 2.67 (median 

6, 12.54%-23.67%) with mean absolute and percent 

difference of 10.89 (median 6.5), means percent of 13.05% 

and 17.1% for the two-tailed case. The differences are 

greater for the case of marginal uniformity with difference 

mean of 8.03 (median 6), percent difference mean from 14.5 

to 19.2%, depending on the denominator; being SS-Donner 

always greater than SS-A&C-max raw and absolute 

differences are the same. Then, the differences decrease for 

the first level of non-uniformity, with difference mean of 7.64 

(median 6) and percent difference mean from 12.13 to 

13.81%. 

A further decrease occurs at the second non-uniformity level, 

with difference mean of 2.03 (median 5) and percent 

difference meanfrom 13.13 to 18.02%. Finally, for the case of 

0.70, 0.10, 0.10, 0.10 marginal the differences are equal to 

those for SS-A&C-max, being the two sample sizes the same. 

Comparison between SS-A&C-max and SS-A&C-min: 

Particularly, combining the 144 results together, the difference 

mean is 1.11 (median of 0, 0.36% and 0.38%), being SS-

A&C-max greater than or equal than AA-A&C-min, differences 

and absolute differences are the same. SS-A&C-max are 

equal to SS-A&C-min in 109 (75.7%) and greater in 35 

(24.3%) cases; particularly, they are equal in the uniformity 

case (0.25, 0.25, 0.25, 0.25) and in the case of marginal 

equal to 0.7, 0.1, 0.1, 0.1. The differences increase a little 

from the one-tailed case with mean of 0.97 (median 0, 0.33% 

and 0.34%) to a mean of 1.26 (median 0, 0.29% and 0.29%) 

in the two-tailed case. Finally, the differences are very similar 

in the two non-uniformity cases: a mean of 2.17 (median 0, 

0.58% and 0.59%) for the pattern of 0.4.0.3.0.2.0.1 and 

mean of 2.31 (median 0, 0.86% and 0.91%) for the pattern 

0.6, 0.2, 0.1, 0.1. However, the differences are greater at the 

lowest differences between k0 and kA.  

Comparison between SS-A&C-max (SS-A&C-min) and SS-

A&C-full: SS-A&C-full is lower than SS-A&C-max with a mean 

difference between SS-A&C-max and SS-A&C-full of 0.85 

(min, Q1, median, and Q3 equal to zero and max = 15.0) with 

a mean of the percent differences of 0.31% in 32 

(22.2%)cases and equal in the remaining 112 (77.8%) cases. 

Furthermore, SS-A&C-full is greater than SS-A&C-min in 20 

(13.9%) cases and equal in the remaining 124 (86.1%) cases. 

Particularly, the mean difference between SS-A&C-min and 

SS-A&C-fullof -0.26 (min = -5, Q1, median, Q3, and max 

equal to 0) with a mean of the percent differences of -

0.045%. As an important consequence of the previously 

reported “common correlation model for the diagonal cells of 

the contingency tables for multinomial variables”, it has to be 

stressed that the interval between the maximum and minimum 

variance value is very narrow, being equal to zero for the 2x2 

and 3x3 contingency tables. Then, in the case of the 4x4 

contingency tables, the difference mean is of 1.12 (min, Q1, 

median, Q3 equal to 0 and max = 19.0), leading to a 

maximum difference between the minimum and maximum 
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sample size values ranging from 0 and 19. The maximum of 19 

occurred in the case of k0 = 0.4, kA= 0.45, marginal 

probabilities of 0.60, 0.20, 0.20 a = 0.05 two-tailed and 

power = 0.80. Generally, difference of more than ten 

occurred when the difference between k0 and kA is only of 

0.05. As a conclusion, the maximum and minimum sample sizes 

calculated under this model are practically the same with 

differences of only a few units and are lower that the sample 

sizes calculated according to Flack et al. [74]. 

Furthermore, the sample size calculated under the “full 

correlation model” (SS-A&C-full) are always within the SS-

A&C-max and SS-A&C-min, and allows to have a unique 

contingency table pattern without recurring to the LP 

procedure. Finally, considering the 4x4 contingency table, the 

differences between these sample sizes, pair wise considered, 

are in the 77.8% equal to SS-A&C-max and in the 86.1% 

equal to SS-A&C-min. 

Influence of the non-uniformity of the marginal and of 

considering the weighted kappa instead of the unweighted 

kappa on the required sample size under the same null and 

alternative hypothesis: As a further and relevant point, there 

is the influence of the non-uniformity on the required sample 

size. 

The following table considers for a 3x3 contingency table, two 

testing hypotheses at  = 0.05 one tailed with k0 = 0.6 and kA 

= 0.8 and k0 = 0.4 and kA = 0.45 for seven pattern of the 

rows (columns) marginal ranging from the uniformity to a very 

extreme non-uniformity. Finally, there are three sample sizes: 

SS-Flak for the unweighted kappa (n-W), for the weighted 

kappa with linear weights (W-Linear), and for the weighted 

kappa with quadratic weights (W-Quadr.). 

1 2 3 

k0 = 0.6 and kA = 0.8 k0 = 0.4 and kA = 0.45 

SS-Flack SS-Flack 

n-W. 
W-

Linear 

W-

Quadr. 
n-W. 

W-

Linear 

W-

Quadr. 

0.333 0.333 0.333 75 116 162 1,679 2,653 3,896 

0.500 0.300 0.200 89 122 172 2,159 2,689 3,996 

0.600 0.300 0.100 105 139 217 2,618 2,913 4,473 

0.700 0.200 0.100 123 158 223 2,960 3,442 4,713 

0.800 0.100 0.100 162 200 249 3,677 4,407 5,567 

0.900 0.050 0.050 302 359 442 6,653 8,137 10,058 

0.990 0.005 0.005 2,848 3,287 4,011 60,858 75,027 90,961 

It has to be noted that the sample size (SS-Flack) from the 

uniform pattern increases of the 3,692% for the first hypothesis 

and of 3,513% for the second one. 

Furthermore, it has to be noted that the weighted kappa 

requires greater sample sizes than the unweighted one, and 

that the quadratic weighting scheme is even more demanding. 

Particularly, the mean percent increase of the W-Linear is of 

30.05% (min = 15.41%, Q1 = 18.87%, median = 28.46, Q3 

= 37.08%, max = 54.67%) for the first hypothesis and of 

25.08% (min =11.26, Q1 = 16.28%, median = 22.31%, Q3 

= 24.55%, max = 58.01%) for the second hypothesis. In 

addition, the percent increase mean of the W-Quadr. is of 

76.87% ( min = 40.83%, Q1 = 46.36%, median 81.30%, Q3 

= 106.67%, max = 116.00%) for the first hypothesis and of 

71.32% (min = 49.46%, Q1 = 51.18% median = 59.22%, 

Q3 = 85.09%, max = 132.04) for the second hypothesis. 

Finally, compared to W-Linear, the sample size of W-Quadr. 

increases of 35.36% (min = 22.03%, Q1 = 23.12, median = 

39.65%, Q3 = 41.14%, max = 56.12%) for the first 

hypothesis and of 36.73% (min = 21.24%, Q1 = 23.61%, 

median = 36.93, Q3 = 48.61%, max = 53.55%) for the 

second hypothesis. 

Simulation study 

Firstly, it has to be stressed that the simulation studies on the 

kappa properties have to be planned with a well-defined 

variance-covariance matrix (  have to be known) in addition 

to the rows (columns) marginal and the observed agreement 

proportion, given the Cohen’s kappa value. It has to be noted 

that c(c-2) cells are “free”, being not determined by the 

constraints given by the fixed rows (columns) marginal and by 

the kappa value. Of course, the simulation results will depend 

on how the  “free”are determined. We simulated under the 

Flack et al.’s [74] condition of a maximum kappa variance 

value under which the  “free” are fixed. So, the calculated  

sample size will be the maximum among all sample sizes 

calculated for contingency tables with the same marginal and 

observed agreement proportion. Consequently, this is the most 

conservative condition, leading to the rejection of the null 

hypothesis more than the expected. Of course, this situation is 

not in agreement with the principle that, in the biomedical 

research, the sample sizes have to be adequate for try to 

prove the primary objective of the research with a satisfactory 

probability level, but also as parsimonious as possible in 

according to ethical requirements. Finally, it has to be stressed 
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that the aims of the simulation study, based on the multinomial 

distribution, are to assess the actual power of testing a kappa 

vs. an expected value and the actual coverage of the 95% 

confidence interval of kappa with so conservative sample sizes. 

Our simulation study has been carried out for contingency 

tables 3x3 and 4x4 on 1,000 samples with their sample size 

calculated accordingly to Flack et al. [74] for a significance 

value of  = 0.05 two-tailed and power of 0.80 or 0.90, 

under four scenarios of rows (columns) marginal (0.33, 0.33, 

0.33; 0.50, 0.25, 0.25; 0.6, 0.3, 0.1;0.80, 0.10, 0.10), and six 

null and alternative hypotheses (k0= 0.4 with kA = 0.6, 0.7, 

and 0.8, and k0 = 0.6 with kA = 0.8, 0.9, and 0.95). In total, 

there are 24 different combinations for each power value. For 

the 4x4 table the four scenarios of the rows (columns) marginal 

were of 0.25, 0.25, 0.25, 0.25; 0.40, 0.30, 0.20, 0.10; 0.60, 

0.20, 0.10, 0.10, and 0.70, 0.10, 0.10, 0.10. 

Table SIM.1A for the 3x3 contingency table shows the 

descriptive statistics (mean, SD, 95% CI limits, Median, 

Minimum, First Quartile- Q1- Third Quartile - Q3 – Maximum) 

of the raw, percent, absolute, and absolute percent bias of the 

estimates of k0 and kA and of the coverage. Table SIM.1B 

shows the bias (raw, raw percent, absolute and absolute 

percent) of the power for the simulations with sample sizes 

calculated for a power of 0.80 and of 0.90, respectively. 

Values have been truncated to the sixth decimal figure. Of 

course, the significance results are for a P-value  0.25 at the 

right tail of the distribution, being the sample size calculated 

for a significance level of 0.05 two-tailed and taking into 

account that a P-value lower 0.25 at the left tail of the 

distribution corresponds to the Type III error or the “Sign error”. 

In the case of a 3x3 contingency table, the absolute bias mean 

for k0 and kA combining together the two simulations with 

sample sizes calculated for a power of 0.80 and of 0.90, 

respectively, are 0.006874 and 0.003596, respectively 

(median 0.006766, and 0.002821, respectively). In addition, 

the percent absolute bias mean compared to the theoretical 

value are 1.393691% and 0.464093%, respectively (median 

of 1.415729%, and of 0.350172%, respectively). The 

empirical values of k0 and kA are always lower than their 

theoretical values. 

The coverage mean bias is -0.018017 (median -0.017050) 

and the mean of the coverage percent bias is -1.896491 

(median = -1.794736), with empirical values always lower 

than the theoretical value of 0.95. Furthermore, 50% of the 

values are lower than 0.933 with a minimum coverage value of 

0.903. 

In addition, the empirical power is always more than the 

theoretical value of 0.80 and in 22 (91.7%) cases is more than 

the theoretical value of 0.90; indeed, it is less than the 

theoretical value of 0.90 in only two cases (8.3%) with k0 = 

0.4 and kA = 0.60 or 0.80 and marginal of 0.80, 0.10, 0.10. 

Table SIM.2A and Table SIM.2B show the corresponding results 

for the simulation of the 4x4 table. The absolute mean bias for 

k0 and kA combining together the two simulations with sample 

sizes calculated for a power of 0.80 and of 0.90, respectively, 

are 0.0060711 and 0.012590, respectively (median 

0.004646, and 0.002651, respectively). In addition, the mean 

percent absolute bias compared to the theoretical value are 

1.252031% and 1.568907%, respectively (median 

0.876641%, and 0.378128%, respectively).  

The empirical k0 values are lower than their theoretical values 

in 46 (95.8%) cases. In two cases (one in the simulation under a 

power of 0.80 and one under a power of 0.9) are greater. 

Particularly, k0 = 0.402820 instead of 0.4 with a power of 

0.80 and k0 = 0.401112 instead of 0.4 with a power of 0.90 

always in the case of marginal equal to 0.40, 0.30, 0.20, 0.10. 

In addition, the empirical kA values are lower than their 

theoretical values in 39 (81.3%) cases. In 9 cases (four in the 

simulation under a power of 0.80 and five under a power of 

0.9) are greater. Particularly, for a power of 0.80, kA = 

0.90056and kA= 0.94781 instead of 0.9with marginal equal 

to 0.25, 0.25, 0.25, 0.25 and 0.70, 0.10, 0.10, 0.10; for the 

other two cases, kA = 0.89618 and = 0.89887 instead of 0.80 

both with marginal equal to 0.70, 0.10, 0.10, 0.10. 

Furthermore, for a power of 0.90, kA = 0.80005 and kA= 

0.90014 instead of 0.8 and 0.9, respectively with marginal 

equal to 0.40, 0.30, 0.20, 0.10; then, kA = 0.89792 and kA= 

0.89816 instead of 0.8 and kA = 0.9400 instead of 0.9 with 

marginal equal to 0.70, 0.10, 0.10, 0.10. 

The mean of the coverage bias is -0.017562 (median -

0.014000) and the mean of the coverage percent bias is equal 

to -1.925438 (median -1.631578). There is one coverage 
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value equal to 0.95are five coverage values (10.4%) more 

than the theoretical value of 0.95 (3 for a power of 0.80 and 

2 for a power of 0.90), always in the case of k0 = 0.4 and kA 

= 0.6. Particularly, in the case of marginal 0.25, 0.25, 0.25, 

0.25, a value of 0.951 with a power of 0.80 and another 

value of 0.952 with a power of 0.90. In addition, a value of 

0.955 in the case of marginal 0.40, 0.30, 0.20, 0.10 with a 

power of 0.80; then, with marginal 0.60, 0.20, 0.10, 0.10, 

values of 0.953 and 0.960 with power of 0.80 and of 0.90, 

respectively. In addition, the empirical power is always more 

than the theoretical value of 0.80 or of 0.90 with mean biases 

of 0.087333 and 0.041500 (median 0.067500 and 

0.036500), respectively. 

DISCUSSION 

Firstly, it has to be said that the sample size calculation for an 

agreement study on qualitative variables to be analyzed with 

Cohen’s kappa it is not a very easy task. Indeed, if the k0 and 

kA under the null and alternative hypotheses can be obtained 

by a careful search of the pertinent literature (k0) and from the 

difference that can be considered as clinically relevant in the 

particular context of the agreement study (kA), the subsequent 

step of fixing the prevalence of the categories on which the 

raters judgment has to be divided, it is likely to require a more 

laborious search of the pertinent literature. Then, given for 

granted that also the rows (columns) marginal have been 

sensibly found, the sample size calculation is still undefined 

since the contingency tables more than 2x2 cannot be uniquely 

defined unless further constraints are imposed. We have 

described the Falk et al. [74] condition of obtaining the 

contingency table with the maximum value of the kappa 

variance leading to a conservative sample size that it could be 

too much demanding compared to the actual feasibility of the 

agreement study. 

For this case, we have shown a mathematical approach (linear 

programming) to be devised to obtain the maximum or the 

minimum value of the kappa variance or any other prefixed 

value (Appendix A: theoretical aspects and the R code) 

avoiding laborious attempts. Then, we have commented the 

Donner et al.’s suggestion [80] of calculating the sample size 

for an agreement study based on the kappa statistics in order 

that the lower limit of the kappa 95% confidence interval is 

greater than a required lower acceptable agreement margin. 

We have shown that the above result is not only not absolutely 

certain to be obtained but, also, to be obtained at a 

satisfactory adequate probability value, as usually it occurs for 

the sample sizes calculated on the precision of the confidence 

interval without considering the confidence interval power, as 

the probability of obtaining the required precision. So, this 

approach can be considered not shareable, unless the power 

of the confidence interval is taken into account by increasing 

the sample size calculated on the precision of the confidence 

interval or, equivalently, on obtaining a lower confidence limit 

greater than a prefixed agreement threshold until a 

satisfactory probability of obtaining the required precision 

result is achieved. 

Then, we have shown that the Altaye et al. [87,89] and Donner 

et al.’s proposal [92,94] of calculating the sample size under 

the “goodness of fitting model” is generally too much 

demanding in terms of sample sizes and we have suggested 

that it could be taken into account in some limited cases with 

contingency tables 3x3 and 4x4 in which they are lower, but 

only if the “agreement or not” condition is acceptable and 

pertinent to the aims of the study. In addition, the statistical 

theory on which the “goodness of fitting model” is based and 

the Dirichlet multinomial distribution have been detailed in 

Appendix B. Then, in Appendix D has been reported a 

program written in the open source R language that allows to 

calculate the sample sizes for any number of raters, under the 

“goodness of fitting model” and the “agreement or not” 

condition, without resorting to specific functions each for a 

defined number of raters of the Rotondi’s kappaSize package 

[94]. 

In addition, we have shown two other sample size calculation 

methods, based on the extension of the common correlation 

model for dichotomous variables. The first is the partial 

common correlation model with the relevant property of having 

equal or similar maximum and minimum values of the kappa 

variance, calculated by means of the LP procedure, leading to 

suppose that it has been obtained the less biased estimates of 

the true population variance; consequently, it could be argued 

that the “sample size as correct as possible” was calculated for 

the envisaged scenario of rows (columns) marginal and null and 

alternative hypothesis. Furthermore, we have refined our 

sample size calculation approach by formulating a second 
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method, based on the full common correlation model, leading 

to obtain a unique probability table and only one value of the 

kappa variance without resorting to the LP procedure. A 

program written in the open source language R for calculating 

the sample sizes according to the full correlation model has 

been reported in Appendix E. 

It has to be noted that in the case of 2x2 contingency tables, 

all our proposed methods (SS-A&C-max, SS-A&C-min, and SS-

A&C-full) gave equal sample sizes which are, in addition, 

equal to those calculated according to Flack et al. [74]. SS-

Donner are generally greater in the case of uniform marginal 

and sometimes lower, particularly in the case of the greatest 

calculated sample sizes; so, it is possible to argue that they can 

be used in these cases, under the “agreement or not” condition, 

in order to save resources without an important reduction of the 

power. Otherwise, in the case of 3x3 contingency tables, all 

our proposed methods (SS-A&C-max, SS-A&C-min, and SS-

A&C-full) give the same sample sizes that are, in addition, 

lower than or, at maximum, equal to those obtained from the 

Flack et al.’s approach [74]. So, our methods may be 

recommended instead. In addition, SS-A&C-max are also 

almost always lower than SS-Donner, but, again in the about 

11% of the cases in which these latter are smaller, they could 

be recommended under the “agreement or not ”condition. 

More diversified is the situation of the 4x4 contingency tables. 

However, as our sample sizes (SS-A&C-max, SS-A&C-min) may 

be recommended since they are smaller or, at the most, the 

same as SS-Flack. More precisely, SS-A&C-full, always 

between or equal to SS-A&C-min and SS-A&C-max, could be 

a more sensible choice. Of course in the limited number of 

cases in which SS-Donner is lower, again, it could be 

considered as an alternative for an “agreement or not” study. 

More relevant is the fact that Donner et al.’s [92,94] proposal 

can be applied to agreement studies with more than two 

raters, taking also into account that the sample size decreases 

as the number of raters increases.  

This is a very important point, since the commercial software 

such as PASS® 13/16 and nQuery®[100] make sample size 

calculation for only two raters. So it has to resort to the 

kappaSize package in R [94] for doing the pertinent sample 

size calculations or to our program, written in the open source R 

language, which uses only one function instead of the different 

formulas, each for a defined number of raters, of the 

kappaSize package (Appendix D). However, a relevant 

drawback of the “goodness of fitting model” proposed by 

Donner et al. [92,94] is the fact that it is based on the 

“agreement or not” without allowing for a differentiate level of 

disagreement through weighted kappa statistics. So, apart 

from the case of a study involving more than two raters it can 

be recommended only in a few cases in which its sample size is 

lower and the object of the study is the “agreement or not” 

situation. Of course, the sample sizes can be calculated with the 

minimum value of the kappa variance for the null (k0) and 

alternative (kA) hypothesis, leading to the lowest sample size. 

Perhaps, in this case there are no problems on the actual 

feasibility of the study but, nonetheless, there are some 

concerns on the actual possibility of demonstrating a difference 

clinically relevant; consequently, this approach cannot be 

recommended. 

So, it has to be concluded that the possibility of having some 

sample sizes calculation procedures can be considered as a 

very useful tool in order to choose the sample size value more 

suitable for the actual feasibility of the study in the particular 

scenario of rows (columns) marginal and null and alternative 

hypothesis. 

As a further remark, it has to be considered that the rows 

(columns) marginal pattern, the number of the categories of the 

variable, and also the number of raters influence the sample 

sizes. Since the required sample size increases as the marginal 

get more even, being the number of the categories fixed by 

the kind of the considered variable and the number of raters 

fixed by the kind of the agreement study, researchers are 

strongly advised to be very careful on the categories 

prevalence. Perhaps, if the knowledge of the distribution of the 

prevalence is unknown, a sensitivity sample size calculation 

starting from the uniform marginal pattern with the minimum 

sample size to an intermediate pattern has to be warmly 

recommended to choose the most reasonable sample size. 

As a final consideration, it has to be stressed that the very 

similar maximum and minimum values of the kappa variance 

under the “partial common correlation model” allows avoiding 

the big differences between the sample sizes calculated with 

the maximum or minimum kappa variance according to Flack et 

al. [74]. Furthermore, the unique kappa variance value under 
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the FCCM leads to sample sizes always within those calculated 

from the maximum and minimum values of the kappa variance 

under the PCCM and allows to argue that this latter model has 

to be strongly recommended since it avoids the need of 

calculating a maximum kappa variance value by resorting to 

LP procedure and, in addition, it refers to its population 

contingency table. So, it seems possible to conclude that with 

the FCCM we have obtained the optimum sample size without 

the rather forced a priori decision of using the maximum kappa 

variance according to Flack et al.’s approach [74]. 

Operative conclusions 

In the case of 2 raters with uniform marginal, PCCM, FCCM 

and Flack et al.’s method [74] give the same sample sizes value 

that are lower than SS-Donner; so, any one of the three 

methods can be chosen. 

In the case of 2 raters with non-uniform marginal, given as 

absolutely sensible the common correlation condition for the 

cells on the principal diagonal, the PCCM can be preferred to 

the Flack et al.’s [74] method since the sample sizes are smaller 

than or at maximum equal. Furthermore, if the common 

correlation condition for all cells of the contingency table can 

be considered sensible, the FCCM can be preferred to PCCM 

and Flack et al.’s method [74] since the sample sizes are 

smaller than or at maximum the same and the kappa variance 

is easier calculated. Donner et al. [92,94] method can be 

considered in the few cases in which the sample sizes are 

lower, provided that the “agreement or not” is the primary 

objective of the study and in the case of more than two raters, 

being the only one currently available. Of course it is also 

possible to calculate the maximum and minimum sample size 

according to PCCM and Flack et al.’s method [74] in order to 

have the complete sample sizes scenario and to choose the 

value which guarantees as much as possible the effective 

feasibility of the agreement study. 
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APPENDIX 

 

Appendix A: Linear Programming. 

Flack et al. [74] proposed to determine the cell probabilities  in order that the estimate of the kappa standard error is maximum. 

Particularly, it has been suggested of “Placing all of the off-diagonal probability, 1 – p, on the  corresponding to the largest rows 

or columns marginal”. However, this suggestion was not supported by a detailed mathematical procedure leading to obtain the 

required and unique contingency table. It has to be noted that the problem of obtaining a contingency table with a determined 

Cohen’s kappa variance can be solved by recurring to Linear Programming (PL). This calculation can be carried out by SAS® 

IML [72] as detailed in its User’s Guide 

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=imlug&docsetTarget=imlug_genstatexpls_sec

t011.htm&locale=en). 

Generally, one must resort to matrix algebra and it has to specify a vector for the lower bounds and/or upper bounds of the 

variables (X) and the vector of coefficients (C) such that C`X is the linear objective function (o.f.). It has to be noted that the 

above expression in matrix algebra means that the transpose (` or T) vector of the coefficients pre-multiplies the vector of the 

variables. By remembering that the linear programming allows obtaining a required value, usually a maximum (max) or a 

minimum (min), the PL general matrix expression is given by: 

 

 

Where z is the objective function (o.f.) to be returned to a maximum (minimum), X is the vector of the involved variables, and 

 is the set of the non-trivial constraints of X. 

It has to be stressed that both the o.f. and the constraints must be linear equations. 

According to Wikipedia, “In mathematical optimization, a popular algorithm for linear programming is the simplex algorithm 

developed by Dantzig (George Bernard Dantzig, November 8, 1914 – May 13, 2005, an American mathematical scientist, 

https://en.wikipedia.org/wiki/Simplex_algorithm) in 1947. The name of the algorithm is derived from the concept of a simplex (a 

simplex, plural: simplexes or simplices is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions) and 

was suggested by Motzkin (Theodore Samuel Motzkin, 26 March 1908 – 15 December 1970 was an Israeli- 

Americanmathematician, https://en.wikipedia.org/wiki/Theodore_Motzkin)”. 

The formulation of our problem in terms of the PL has its first step in identifying the objective function to be maximized 

consisting in the formula of the kappa (kw) variance (reproduced here for easiness of reading, with “c” for the number of 

categories equal to the number of the rows or of the columns): 

https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=imlug&docsetTarget=imlug_genstatexpls_sect011.htm&locale=en
https://documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.4&docsetId=imlug&docsetTarget=imlug_genstatexpls_sect011.htm&locale=en
https://en.wikipedia.org/wiki/Simplex_algorithm
https://en.wikipedia.org/wiki/Mathematical_sciences
https://en.wikipedia.org/wiki/Simplex_algorithm
https://en.wikipedia.org/wiki/Simplex
https://en.wikipedia.org/wiki/Theodore_Motzkin
https://en.wikipedia.org/wiki/Israel
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/United_States
https://en.wikipedia.org/wiki/Theodore_Motzkin
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where  

The above formula can be written also as: 

 

Where: 

 

Of course, in the case of the unweighted kappa the weight matrix for “agreement weights” is a unity matrix and the above formula 

becomes: 

 

So, the kappa variance is a linear function of the probabilities of the table. 

In order to obtain the previously reported formula , where C and X are vectors, the matrix of the probabilities ( ) and 

the matrix of the coefficients ( ) have to be transformed in their corresponding vectors, by stacking the columns of each matrix 

one below the other; for example, the probability matrix (P) becomes the row vector X and the coefficients matrix (F, say) 

becomes the vector C: 

 

 

 

The operator “T” (superscript) for “transpose” has been written since a row vector it is shown to save space instead of a column 

vector. The second step consists in the formulation of the constraints, taking into account that the row and column constraints 

together with the constraint pertinent to the fixed kappa value are equalities and, consequently, linear expressions. Also these 

constraints have to be transformed, similarly to the transformation made on the variables and coefficients matrices in order to be 

expressed in the matrix formula: 
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Let’s take the simple case of a 3x3 contingency table together with its 3x3 probabilities matrix (P) and coefficients matrix (F). 

So: 

 

The row and column constraints are, respectively: 

  

  

  

It has to be noted that one of these constraints is redundant (for example the third), but since this fact does not affect this 

procedure, it has been retained for the sake of clarity. 

Then, the further constraint due to kappa is: 

 

So, the column vector C and X are: 

 

The first constraint (the sum of the probability values of the first row equals the respective marginal) given 

by: becomes: 

 

And so on for the remaining k row constraints and for the k (or k-1) column constraints. 

The constraint due to kappa (the sum of the probability values on the principal diagonal must be equal to the observed proportion 

of agreement to give a well-defined kappa value) given by: becomes: 

 

The matrix A, obtained by including all constraints, is: 
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It has to be noted that this matrix has 7 constraints (3 for the rows, 3 for the columns and 1 for the kappa or the observed 

proportion of agreement) and 9 columns since there are 9 probability values and 9 coefficients. 

The vector of the known value is given by the known row and column marginal and by the known proportion of the observed 

agreement, given the kappa value: 

[  

Then the expression of the constraints in matrix algebra is: 

 

So, with the previously outlined transformations, we have obtained a linear programming problem to be resolved with the 

pertinent method. 

Summarizing, from a square (cxc) contingency table, we obtain: 

1)- X: a vector with c2  elements of the unknown terms (from the P matrix of the unknown cell probabilities) 

2)- C: a vector with c2  elements of the coefficients of the o.f. (from the F matrix)  

3)- A: a matrix with (2c+1) x (c2) elements: (2c+1) rows and c2 columns 

4)- B: a vector with (2c+1) elements of the known terms. 

Procedure in R 

In the R settings, the procedure lp(…) of the package lsSolve allows to obtain the solution of our maximization problem 

(https://CRAN.R-project.org/package=lpSolve). 

However, in order to utilize this procedure, a further vector (Dir) has to be made with its elements given by the kind of the 

inequality together with its direction (< or >) or by the equality ( = ) of each constraint. 

It has to be noted that in the case we are interested in, this vector has to be made of all equalities:  

 

Essential parameters of the function lp(…) are: 

1)-“direction”: “Character string giving direction of optimization”: "min" (default) or "max." 

2)-“objective.in”: “Numeric vector of the objective function coefficients” 

https://cran.r-project.org/package=lpSolve
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3)-“const.mat”: “Matrix of numeric constraint coefficients: particularly, one row per constraint, one column per variable”. 

4)-“const.dir”: “Vector of character strings giving the direction of the constraint: each value should be one of” "<," "<=," "=," 

"==," ">," or ">=". “(In each pair the two values are identical.)” 

5)-“const.rhs”: “Vector of numeric values for the right-hand sides of the constraints”. 

Particularly, in the case of calculating the probabilities table for obtaining the maximum kappa variance, it has to write: 

lp(direction = "max", objective. in = CT, const. mat = A, const. dir = Dir, const. rhs = B) 

Otherwise, for the minimum variance, it has to write: direction = "min" 

A numerical example: 

 # the package lsSolve has to be uploaded  

#Having fixed the row equal to the column marginal (Pmarg = c(,,,), the kappa value and the number of 

observation (n_obs):  

Pmarg = c(.5,.3,.2); kappa =0.1,n_obs = 200  

And the weights matrix W  

> W (weights matrix)  

[,1] [,2] [,3]  

[1,] 1 0 0  

[2,] 0 1 0  

[3,] 0 0 1  

It is possible to obtain: po (the proportion of observed agreement) and pe (the proportion of the chance agreement)  

> po; pe  

[1] 0.442  

[1] 0.380  

and the matrix A: (matrix of the coefficients of the matrix equation AX = B)  

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]  

[1,] 1 0 0 1 0 0 1 0 0  

[2,] 0 1 0 0 1 0 0 1 0  

[3,] 0 0 1 0 0 1 0 0 1  

[4,] 1 1 1 0 0 0 0 0 0  

[5,] 0 0 0 1 1 1 0 0 0  

[6,] 0 0 0 0 0 0 1 1 1  

[7,] 1 0 0 0 1 0 0 0 1  

The vector B of the known terms of the system AX=B is:  
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B=[ 0.500 0.300 0.200 0.500 0.300 0.442]  

#Intermediate calculations for obtaining the coefficients (cij) of the objective formula (o.f.)  

#Calculus of WM (matrix of the quantities 𝑤̅ 𝑖.+𝑤̅ .𝑗 for the two pedix i and j  

> WM_c<-t(W)%*%pmarg  

> WM_r<-W%*%pmarg  

> WM<-outer(c(WM_r),c(WM_c),"+")  

> WM  

[,1] [,2] [,3]  

[1,] 1.0 0.8 0.7  

[2,] 0.8 0.6 0.5  

[3,] 0.7 0.5 0.4  

> W*(1-pe)  

[,1] [,2] [,3]  

[1,] 0.62 0.00 0.00  

[2,] 0.00 0.62 0.00  

[3,] 0.00 0.00 0.62  

> WM*(1-po)  

[,1] [,2] [,3]  

[1,] 0.5580 0.4464 0.3906  

[2,] 0.4464 0.3348 0.2790  

[3,] 0.3906 0.2790 0.2232  

> (W*(1-pe)-WM*(1-po))^2 (first part of the numerator of the formula of the coefficients cij)  

[,1] [,2] [,3]  

[1,] 0.0038440 0.19927296 0.1525684  

[2,] 0.1992730 0.08133904 0.0778410  

[3,] 0.1525684 0.07784100 0.1574502  

> (po*pe-2*pe+po)  

[1] -0.15004  

> ((po*pe-2*pe+po))^2 (second part of the numerator of the formula for the coefficients cij)  

[1] 0.022512  

> (n_obs*(1-pe)^4) (denominator of the formula of the coefficients cij)  

[1] 29.55267  

> C2_mtx (matrix of the coefficients cij)  

[,1] [,2] [,3]  
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[1,] -0.0006316857 0.005981217 0.004400832  

[2,] 0.0059812175 0.001990583 0.001872216  

[3,] 0.0044008325 0.001872216 0.004566025  

> C2 is the vector C of the coefficients of the o.f. calculated with the previously reported formula (matrix of the 

coefficients cij transformed in a vector)  

[1] -0.0006316857 0.0059812175 0.0044008325 0.0059812175 0.0019905827  

[6] 0.0018722164 0.0044008325 0.0018722164 0.0045660250  

The vector C, obtained from the previous formula, is:  

CT= [-0.0006316857 0.0059812175 0.0044008325 0.0059812175 0.0019905827 0.0018722164 0.0044008325 

0.0018722164 0.0045660250]  

### calculus of the probability matrix  

> library(lpSolve)  

The vector Dir is:  

> Dir <- ["=" "=" "=" "=" "=" "=" "="]  

The command to be performed is:  

> sol_max<- lp(direction = "max", objective.in = C, const.mat = A, const.dir = Dir, const.rhs = B)  

# “the procedure lp returns an object containing, among others, the objective function value at the optimum 

(maximum or minimum requested) and the vector of the optimal coefficients called solution”.  

> sol_max$f.obj.value  

[1] 0.004152924  

> sol_max$solution  

[[1] 0.221 0.279 0.000 0.279 0.021 0.000 0.000 0.000 0.200  

> m_max<- matrix(sol_max$solution,n,n) # this command transforms the probability vector in a table  

> m_max  

[,1] [,2] [,3]  

[1,] 0.221 0.279 0.0  

[2,] 0.279 0.021 0.0  

[3,] 0.000 0.000 0.2  

kappa_Fleiss(x = m_max,n_obs = 200)  

size po pe kappa var_K  

200 0.442 0.38 0.1 0.004152924  

Where “size” is the number of observations, “po” is the observed agreement proportion for obtaining, given the 

row and columns marginal, the prefixed kappa value, “pe” is the proportion of the agreement given by chance, 

kappa is the kappa value and “var_k” is the kappa variance value that is a maximum in this case.  

For the minimum variance value, the command becomes:  
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> sol_min<- lp(direction = "min", objective.in = C, const.mat = A, const.dir = Dir, const.rhs = B)  

m_min  

[,1] [,2] [,3]  

[1,] 0.421 0.079 0.0  

[2,] 0.079 0.021 0.2  

[3,] 0.000 0.200 0.0  

$kappa_Fleiss  

size   po   pe     kappa var_K  

200  0.442  0.38   0.1   0.001469781  

Where “size” is the number of observations, “po” is the observed agreement proportion for obtaining, given the 

rows and columns marginal, the prefixed kappa value, “pe” is the proportion of the agreement given by chance, 

kappa is the kappa value and “var_k” is the kappa variance value that is a minimum, in this case.  

In addition, it is possible also to obtain a probability table with a fixed value of the “unity kappa variance”.  

Example of sample size calculation according to Flack et al. [74]  

> kappa_ssize_FL(pmarg = c(.5,.3,.2), kappa0 =.6, kappa =.8, max_min_var = "max", alpha = .05, power = .8, 

two_one_tail = 2, out = 2)  

 size     alpha power  kappa0  kappaA p1 p2 p3    tau_H0       tau_HA     varK_H0     varK_HA  
[1,]      88.34428 0.05   0.8      0.6         0.8         0.5 0.3 0.2 0.7263955 0.5419585 0.5276504  0.293719  

#tau_H0 and tau_HA are the standard errors of the corresponding unity variances (formula 2, page 322 of Flack 

et al.[74]), under H0 and HA hypothesis, respectively.  

#Check of the values of the variance under H0 and under HA:  

> Mtx_nxn_PL(pmarg = c(.5,.3,.2), kappa = .6, max_min_var = "max", n_obs = 1, out = 2)  

$mtx_vmax  

[,1] [,2] [,3]  

[1,] 0.376 0.124 0.0  

[2,] 0.124 0.176 0.0  

[3,] 0.000 0.000 0.2  

$kappa_Fleiss  

 size  po  pe  kappa     var_K  Var_K_0_exact  Var_K_0_appx  

[1,]  1  0.752  0.38  0.6  0.5276504  0.005371089   0.5317378  

#It has to be noted that ”Var k_0_exact” is the value of the exact kappa variance under the null hypothesis (H0: k 

= 0.6), according to Everitt [68].  

> Mtx_nxn_PL(pmarg = c(.5,.3,.2), kappa = .8, max_min_var = "max", n_obs = 1, out = 2)  

$mtx_vmax  

[,1] [,2] [,3]  
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[1,] 0.438 0.062 0.0  

[2,] 0.062 0.238 0.0  

[3,] 0.000 0.000 0.2  

$kappa_Fleiss 

        size   po      pe    kappa    var_K       Var_K_0_exact   Var_K_0_appx 

[1,]    1  0.876    0.38    0.8     0.293719       0.005371089        0.5317378 

Appendix B: Dirichlet Multinomial Distribution. Sample Size According to the “Goodness-Of-Fit” approach from Donner and 

Eliasziw [80,82].  

By using the same notation of Altaye et al. [87], let Xijdenote the absolute frequency of the ratings on subject i (i = 1, …, n) into 

category j (j = 1, …, c, being c mutually exclusive categories) rated independently by a set of “n” randomly selected raters. 

Furthermore, let’s assume that the rating probability of each category are P1, P2, …, Pc, where P1+···+Pc=1 and, consistently, 

Xi1+···+X
ic
= n. So, it has to be noted that the above model assumes the rater interchangeability or the marginal homogeneity 

across raters.  

Then, under the usual assumption that the Xij’s are mutually independent, it follows that the joint distribution of the Xij’s 

conditional on Pj (j = 1, 2, …, c) is given by the multinomial distribution: 
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However when the assumption of mutual independence does not hold, the Pj may alternatively be assumed to follow a Dirichlet 

distribution with parameters  as it has been shown, among others, by Brier [90] and Mosimann [98], with density 

function given by: 
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Where aj> 0. 

Then the joint distribution of the Xij’s is a Dirichlet multinomial and is given by: 
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Equivalently, if we let

c

j
j

a


 
1

, and πj= aj / , where πj, is the expected value of Pj, we obtain:  
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A different formulation of the Dirichlet Multinomial Distribution. 

We consider the following different notation for the factorial algebra: 
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And the following for the Gamma function. 
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Letting 
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Calculus of the Probability of the

 

Agreement against the “not agreement”.

 

Donner and Eliasziw [80,82] proposed to combine all the cells with a disagreement component into a single cell. This will allow 

us to test hypotheses concerning the specified value of a single parameter. So, the cxc cells of the probability table are split into c 

cell with the probability of the perfect agreement and a further cell with the probability of all ratings with a disagreement 

component.  

For the given set of “n” raters, let’s P(j1,j2,…,jn) be the probability that rater 1 chooses category “j1” , rater 2 chooses category 

“j2”, and so on. Then, the probability that all raters chooses the same category j is: 
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That, expressed in terms of k, becomes: 
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For example, with 3 raters and 3 categories, the probability that the three raters rank the i-th subject in the j-th (j=1,2,3) category 

is: 
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The above formula corresponds to the first three rows of the formula (4) of Altaye et al. [89].  

There is also the following recursive version of this formula: 
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Sample Size Calculation. 

The above formulas can be used for the sample size calculation under the “Goodness of fit” approach.  

Several Authors have suggested to calculate these probabilities with the equivalent formula from Altaye et al. [87]: 
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Rotondi and Donner [92,94,99] have implemented the package “kappaSize” of the open source R software with four functions 

(PowerBinary, Power3Cats, Power4Cats,Power5Cats) in order to calculate the sample sizes for a limited number of categories 

(respectively: 2, 3 4 and 5) and of raters (2 to 6). 

However, by using the previously reported formula (in both the recursive and non-recursive versions), it is possible to write a 

unique function allowing to calculate the sample size for any number of categories and raters. 

The software in the open source R language of the above mentioned formula is shown in the Appendix D. 

Appendix C: Sample Sizes shown in the von Eye and Mun’s book [24] 

von Eye and Mun’s book [24] showed the Table 1.4: “Minimum Required Sample Sizes for  = 0.05 and p = 0.8 (power)” 

summarizing two tables of Indurkhya et al.’s paper [96]. Particularly, the first table reports the required sample sizes for the null 

hypothesis that k0 = 0.4 vs. the alternative one that k1 = 0.6, for = 0.05 and p = 0.8 (for power); then the second table reports the 

required sample sizes for the null hypothesis that k0 = 0.6 vs. the alternative one that k1 = 0.8, for  = 0.05 and p = 0.8 (for power).  

It has to be commented that the sample sizes shown for the case of “Null hypothesis: k0 = 0.4, alternative hypothesis: k1 = 0.6, 

three categories and number of raters ranging from 2 to 6” are obtained or exactly or with a difference of only one unity from the 

procedure of Altaye and Donner [87,89] and Donner et al. [92,94] with the package “kappaSize” of R [94], as it is shown in the 

following table. Between brackets there are the sample sizes calculated from the Rotondi’s R software [94] Power3 Cats “Power-

Based Approach for the Number of Subjects Required for a Study of Interobserver Agreement with Three Outcome Categories”, 

Power 3 Cats(kappa0=, kappa1=, props=C(), raters=, alpha=, power=) where the significance level alpha () is two-sided.  

Marginal probabilities Number of raters 

1 2 3 2 3 4 5 6 

0.10 0.10 0.80 205(206) 113(114) 83(84) 68(69) 59(60) 

0.10 0.40 0.50 127(127) 69(69) 50(50) 40(41) 35(35) 

0.33 0.33 0.34 107(106) 58(58) 42(43) 35(35) 30(30) 

All sample sizes are equal or differ of one unit at most. 

The same pattern occurs for the third part of Table 1.4, always with three categories and with null hypothesis: k0 = 0.6 and 

alternative hypothesis: k1 = 0.8. 

Marginal probabilities Number of raters 

1 2 3 2 3 4 5 6 

0.10 0.10 0.80 172(173) 102(102) 77(78) 66(65) 58(58) 

0.10 0.40 0.50 102(103) 60(61) 46(46) 40(39) 35(34) 

0.33 0.33 0.34 87(87) 52(51) 39(39) 33(33) 30(29) 

However, sample sizes are very different in the case of four categories. 
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The following table shows the results for the case of the “Null hypothesis: k0 = 0.4, alternative hypothesis: k1 = 0.6”, 

corresponding to the second part of Table 1.4 of von Eye and Mun’s book [24]. 

The sample sizes have been calculated by the function Power4Cats “Power-Based Approach for the Number of Subjects Required 

for a Study of Interobserver Agreement with Four Outcome Categories” [94]. 

Marginal probabilities Number of raters 

1 2 3 4 2 3 4 5 6 

0.10 0.10 0.10 0.70 102(140) 42(78) 38(58) 32(48) 29(41) 

0.10 0.30 0.30 0.30 88(92) 30(51) 30(38) 29(31) 27(27) 

0.25 0.25 0.25 0.25 60(87) 28(49) 27(36) 25(30) 25(26) 

A similar pattern of a relevant difference occurs also for the case of “null hypothesis: k0 = 0.6, alternative hypothesis: k1 = 0.8”, 

corresponding to the fourth part of the Table 1.4 of von Eye’s and Mun’s book [24]. 

The sample sizes between brackets have been calculated by the function Power4Cats “Power-Based Approach for the Number of 

Subjects Required for a Study of Interobserver Agreement with Four Outcome Categories” [94]. 

Marginal probabilities Number of raters 

1 2 3 4 2 3 4 5 6 

0.10 0.10 0.10 0.70 157(119) 74(71) 68(54) 52(46) 49(40) 

0.10 0.30 0.30 0.30 88(78) 30(46) 30(35) 29(30) 27(26) 

0.25 0.25 0.25 0.25 60(74) 28(44) 27(34) 25(28) 25(25) 

So, it is very strange that the sample sizes are the same or different for only one unit in the 3x3 categories case and very different 

in the 4x4 categories case with a general increase for the “null hypothesis: k0 = 0.4, alternative hypothesis: k1 = 0.6”, and an 

increase/decrease pattern for the “null hypothesis: k0 = 0.6, alternative hypothesis: k1 = 0.8”. Furthermore, the sample sizes shown 

in the Table 1.4 of the von Eye and Mun’s book [24] for the four categories case do not show the nice decreasing pattern at the 

increasing number of raters as it is shown by the sample sizes calculated by Rotondi’s “Power4Cats” function [94]. So, it seems to 

be sensible to not rely on the sample sizes shown in von Eye and Mun’s book [24] for the case of 4x4 contingency table. 

Furthermore, it is difficult to understand why after having written that the sample sizes have been derived for the null hypothesis 

of k0 = 0, there are only two sample sizes calculated for testing k0 = 0.4 vs. k1 = 0.6 and k0 = 0.6 vs. k1 = 0.8. 

Von Eye and Mun’s comment [24] about the decreasing of the sample sizes (Table 1.4) with the increase of the number of raters 

and the increase of the number of rating categories, is quite logical and expected. Indeed, this is a situation similar to that of a 

repeated measurements design in which the sample size decreases with the increase of the measurement occasions and also with 

the increase of the correlation among the repeated measurements. In addition, it is also consistent the increase of the sample sizes 

with the increase of the marginal non-uniformity. 

A further comparison of the sample sizes shown in the Table 1.4 of von Eye and Mun’s book [24] can be done with the sample 

sizes calculated for only two raters according to Flack et al. [74] or, equivalently by PASS (13/16) [75] as the following table 
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shows for with three categories with null hypothesis: k0 = 0.4; alternative hypothesis, k1 = 0.6,  = 0.05 (two-tailed), and power = 

0.80. 

Between brackets there are the sample sizes calculated according to Flack et al. [74] or Pass (13/16) [75] for  = 0.05 (two-tailed 

and one tailed, respectively). 

Marginal probabilities Number of raters (2) 

1 2 3  

0.10 0.10 0.80 205 (219 - 171) 

0.10 0.40 0.50 127 (145 - 113) 

0.33 0.33 0.33 107 (101 -  79) 

It is very well evident that the sample sizes calculated with the maximum value of the kappa variance according to Flack et al. 

[74] or PASS (13/16) [75] are greater in the case of non-uniformity of the marginal and lower in the case of marginal uniformity.  

A different pattern occurs for the third part of the Table 1.4, always with three categories, with null hypothesis: k0 = 0.6, 

alternative hypothesis: k1 = 0.8,  = 0.05 (two-tailed), power = 0.80 in the case of two raters. 

Between brackets there are the sample sizes calculated according to Flack et al. [74] or Pass (13/16) [75] for  = 0.05 (two-tailed 

and one tailed, respectively). 

Marginal probabilities Number of raters (2) 

1 2 3  

0.10 0.10 0.80 172 (162 - 126) 

0.10 0.40 0.50 102 (98 - 76) 

0.33 0.33 0.34 87 ( 75- 58) 

Indeed, rather surprisingly, the sample sizes calculated with the maximum value of the kappa variance according to Flack et al. 

[74] or PASS (13/16) [75] are always lower. 

The following table shows the results for the case of the null hypothesis: k0 = 0.4, alternative hypothesis: k1 = 0.6,  = 0.05 (two-

tailed), and power = 0.80, corresponding to the second part of the Table 1.4 of von Eye’s and Mun’s book [24]. 

Marginal probabilities Number of raters (2) 

1 2 3 4  

0.10 0.10 0.10 0.70 102(155 - 121) 

0.10 0.30 0.30 0.30 88( 97 - 76) 

0.25 0.25 0.25 0.25 60( 83 - 65) 
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It is very well evident that the sample size values are always greater. 

The following table show the sample sizes for the null hypothesis: k0 = 0.6, alternative hypothesis: k1 = 0.8,  = 0.05 (two-tailed), 

power = 0.80, corresponding to the fourth part of the Table 1.4 of von Eye and Mun’s book [24] in the case of only two raters. 

Marginal probabilities Number of raters(2) 

     

0.10 0.10 0.10 0.70 157 (114 - 88) 

0.10 0.30 0.30 0.30 88 ( 71 -  55) 

0.25 0.25 0.25 0.25 60 ( 64 - 50) 

In this case there is an erratic pattern with smaller values in the case of an important marginal non-uniformity and a little greater 

value (64 instead of 60)in the case of uniformity. 

The above discrepancies make it difficult to rely on the sample sizes shown in von Eye and Mun’s Table 1.4 [24] in planning an 

agreement study on qualitative variables to be analyzed by means of Cohen’s kappa also for the case of two raters. 

Furthermore, Indurkhya et al.’s paper [96] is not actually present and, consequently downloadable from the internet site 

(https://www.dgps.de/fachgruppen/methoden/mpr-online/) of the journal Methods of Psychological Research (MPR-online) 

among the three papers of the last issue (N.1, Vol.9, 2004) of MPR-online. Indeed, MPR-online at the end of 2004 was merged 

with the Spanish journal "Metodologia de las Ciencias del Comportamiento" leading to a new journal called "Methodology 

European Journal of Research Methods for the Behavioral and Social Sciences” that is the official organ of the European 

Association of Methodology (EAM), published by Hogrefe & Huber until 2019 and then by ZPID on their PsychOpen platform.  

Appendix D. R code for the sample size calculation with a number of raters equal or more than two with only a function. 

The following is the code of a function in R written for unifying together the four functions (PowerBinary, Power3Cats, 

Power4Cats, and Power5Cats) of the Package ‘kappaSize’, November 26, 2018, Version 1.2, Date 2018-11-25, Title: Sample Size 

Estimation Functions for Studies of Interobserver Agreement Author: Michael A. Rotondi, Maintainer: Michael A. Rotondi [94]. 

The “kappaSize” package has to be loaded 

Parameters for this example: 

pmarg<-c(.6,.3,.1); kappa<-.6; nr<-2 names(pmarg)<-paste("p",1:n_cat,sep="") 

In the vector c(), it has to insert the marginal probabilities (equal of the rows and of the column); kappa: it has to insert the value; 

“nr” is the number of the raters, 2 in this example. 

###################################################################### 

#Recursive Function for calculating the probability of the agreement or not according to Donner et al.  

###################################################################### 

https://www.dgps.de/fachgruppen/methoden/mpr-online/
http://www.hhpub.com/
http://leibniz-psychology.org/en/services/publication/
http://www.psychopen.eu/
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# Calculus of only one probability  

 
 P_agree<-function(prob,kappa,nr) {  

if (nr==1) P<-prob else P<-P_agree(prob,kappa,nr=nr-1)*(prob*(1-kappa)+(nr-1)*kappa)/(1+(nr-2)*kappa)  

return(P)  

}  

# Calculus of all the probabilities.  

Probs_agree<-function(pmarg,kappa,nr) {  

n_cat<-length(pmarg)  

# calculus of the probabilities  

probs<-sapply(X = pmarg,FUN = P_agree,kappa=kappa,nr=nr)  

P0<-1-sum(probs)  

# output  

result<-c(P0,probs)  

names(result)<-0:n_cat  

return(result)  

}  

#####################################################################  

# Function for calculating the non-central parameter of a 2 distribution with degree of freedom (df) equal to 1 

(df = 1)  

#####################################################################  

lambda<-function(alpha,power,two_one_tail,df=1) {  

if (two_one_tail==1) alpha<-alpha*2  

lambda<-uniroot(f = function(x) {pchisq(q = qchisq(p = 1-alpha,df = df,ncp = 0),  

df = df,ncp = x,lower.tail = F)-power},interval = c(0,100))$root  

return(lambda=lambda)  

}  

########################################################################  

## Function for calculating the Sample Size for the comparison between two kappa values  

########################################################################  

kappa_ssize_Donner<-function(pmarg,nr,k0,kA,alpha,power,two_one_tail,out=1) {  

# calculus of the probabilities under the null hypothesis (H0) and the alternative hypothesis (HA)  

pi_H0<-Probs_agree(pmarg = pmarg, kappa = k0, nr = nr)  

pi_HA<-Probs_agree(pmarg = pmarg, kappa = kA, nr = nr)  
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# calculus of the non-  

lmbda<-lambda(alpha = alpha, power = power, two_one_tail = 2,df=1)  

# calculus of the sample size  

Den<-sum((pi_HA-pi_H0)^2/pi_H0)  

N<-ceiling(lmbda/Den)  

# output  

if (out==1) return(ssize=N) else {  

ris2<-cbind(pmarg=t(pmarg), n_raters=nr, alpha=alpha, power=power, tail=two_one_tail, ssize=N)  

nomi_pr<-paste("p",1:length(pmarg), sep="")  

colnames(ris2)[1:length(pmarg)]<-nomi_pr  

if (out==2) return(ris2) else return(cbind(ris2, lambda=lmbda, Den=Den))  

}  

}  

Example 1  

“kappa_ssize_Donner” is the function written by one of the authors (PA) in R and “Power3Cats” is the name of 

the function of the Package ‘kappaSize’[94].  

> kappa_ssize_Donner(pmarg = c(.6,.3,.1),nr = 3,k0 = .4,kA = .6,alpha = .05,power = .8,two_one_tail = 2,out = 

2)  

p1 p2 p3 n_raters k0 kA alpha power tail ssize  

[1,] 0.6 0.3 0.1 3 0.4 0.6 0.05 0.8 2 74  

The above output, from our function, reports the marginal probabilities, the number of raters, the two value of 

kappa under the null and the alternative hypothesis, respectively, alpha ( ) power (1 – ), number of tails and, 

finally, the sample size.  

> Power3Cats(kappa0 = .4,kappa1 = .6,props = c(.6,.3,.1),raters = 3,alpha = .05,power = .8)  

A minimum of 74 subjects are required for this study of interobserver agreement.  

The above output is from the function of the Package ‘kappaSize’  

Example 2  

> kappa_ssize_Donner(pmarg = c(.3,.3,.2,.1,.1), nr = 6,k0 = .4, kA = .6,alpha = .05, power = .8, two_one_tail = 

2, out = 2)  

p1 p2 p3 p4 p5 n_raters k0 kA alpha power tail ssize  

[1,] 0.3 0.3 0.2 0.1 0.1 6 0.4 0.6 0.05 0.8 2 25  

The above output, from our function, reports the marginal probabilities, the number of raters, the values of 

Cohen’s kappa under the null (k0) and the alternative hypothesis (kA), respectively, the significance level (alpha), 

the power (power), the number of tails (tail) and, finally, the sample size (ssize).  
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> Power5Cats(kappa0 = .4,kappa1 = .6,props = c(.3,.3,.2,.1,.1),raters = 6,alpha = .05,power = .8)  

A minimum of 25 subjects are required for this study of interobserver agreement.  

Warning: At least one expected cell count is less than five.  

Warning: At least one expected cell count is less than five.  

Warning: At least one expected cell count is less than five  

The above output is from the function “Power5Cats” of the Package ‘kappaSize’  

Appendix E. R function for the sample size calculation in the case of the Full Common Correlation Model 

(FCCM)  

No packages have to be upload for running the following R code.  

kappa_ssize_PA<-function(pmarg, kappa0,kappaA,alpha=.05,power=.8,two_one_tail=1,out=1) {  

n_cat<-length(pmarg)  

names(pmarg)<-paste("p",1:n_cat,sep = "")  

if (abs(sum(pmarg) - 1) >= 0.001)  

stop("Sorry, the three proportions must sum to one.")  

for (i in 1:n_cat) {  

if ((pmarg[i] >= 1) || (pmarg[i] <= 0))  

stop("Sorry, the proportion, pmarg must lie within (0,1).")  

}  

if ((kappa0 >= 1) || (kappa0 <= 0) || (kappaA <= 0) || (kappaA >= 1))  

stop("Sorry, the null and alternative values of kappa must lie within (0,1).")  

if ((alpha >= 1) || (alpha <= 0) || (power <= 0) || (power >= 1))  

stop("Sorry, the alpha and power must lie within (0,1).")  

k0<-kappa0;kA<-kappaA  

# probabilities table under H0  

p_diag_H0<-k0*pmarg*(1-pmarg)+pmarg^2  

PP<-outer(pmarg,pmarg,FUN = "*")  

p_off_diag_H0<-(1-k0)*(PP-diag(diag(PP)))  

Pij_H0<-p_off_diag_H0; diag(Pij_H0)<-p_diag_H0  

# probabilities table under HA  

p_diag_HA<-kA*pmarg*(1-pmarg)+pmarg^2  

PP<-outer(pmarg,pmarg,FUN = "*")  

p_off_diag_HA<-(1-kA)*(PP-diag(diag(PP)))  

Pij_HA<-p_off_diag_HA; diag(Pij_HA)<-p_diag_HA  

# calculus of the kappa variance by means of the function kappa_Fleiss of R.  
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kappa0_rst<-kappa_Fleiss(x = Pij_H0,n_obs = 1)  

kappaA_rst<-kappa_Fleiss(x = Pij_HA,n_obs = 1)  

varK_H0<-kappa0_rst[,"var_K"]  

varK_HA<-kappaA_rst[,"var_K"]  

if (two_one_tail==1) {  

z_alpha<-qnorm(p = 1-alpha)  

z_beta<-qnorm(p =power)  

} else {  

z_alpha<-qnorm(p = 1-alpha/2)  

z_beta<-qnorm(p = power)  

}  

# calculus of the sample size  

N<-(z_alpha*sqrt(varK_H0)+z_beta*sqrt(varK_HA))^2/(kappaA- kappa0)^2  

# output  

out1<-cbind(size=N); rownames(out1)<-NULL  

out2<-cbind(size=N,alpha=alpha,power=power,kappa0=kappa0,kappaA=kappaA, 

rating_probs=t(pmarg),tau_H0=sqrt(varK_H0),tau_HA=sqrt(varK_HA),varK_H0=varK_H0,varK_HA=varK_H

A)  

rownames(out2)<-NULL  

if (out==1) return(out1) else return(out2)}  

# kappa_Fleiss R function for the calculus of the Cohen’s kappa and its variance.  

kappa_Fleiss<-function(x,n_obs=NULL,W=NULL) {  

# x table of the relative frequencies of the absolute frequencies (for this latter case, n_obs has to be put to NULL)  

if (is.null(n_obs)) n<-sum(x) else n<-n_obs  

ncat<-dim(x)[1]  

M_prob<-x/sum(x)  

## two weight matrices frequently used  

# W1 whose elements are: w1(i,j)=1-abs(i-j)/(n_cat-1)  

# W2 whose elements are: w2(i,j)=1-(abs(i-j)/(n_cat-1))^2  

indx<-which(x>=0,arr.ind = T)  

W1<-1-matrix(abs(indx[,"row"]-indx[,"col"])/(ncat-1),ncat,ncat)  

W2<-1-matrix((abs(indx[,"row"]-indx[,"col"])/(ncat-1))^2,ncat,ncat)  

if (is.null(W)) W<-diag(1,ncat,ncat)  

if (!is.matrix(W) ){  
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W<-switch(W,  

W<-W1,  

W<-W2)  

}  

### calculus of Cohen’s kappa  

pmarg_row<-apply(X = M_prob,MARGIN = 1,FUN = sum)  

pmarg_column<-apply(X = M_prob,MARGIN = 2,FUN = sum)  

M_prob_Ind<- outer(pmarg_row,pmarg_column,FUN = "*")  

p0<-sum(W*M_prob)  

pc<-sum(W*M_prob_Ind)  

kappa<-(p0-pc)/(1-pc)  

# calculus of the kappa variance according to the formula 8 (page 324) of Fleiss et al.’s paper [50].  

wmarg_row<-apply(X = W*pmarg_column,MARGIN = 2,FUN = sum)  

wmarg_column<-apply(X = W*pmarg_row,MARGIN = 2,FUN = sum)  

M_marg_sum<-outer(wmarg_row,wmarg_column,FUN = "+")  

A<-1/(n*(1-pc)^4)  

B1<-W*(1-pc) # matrice {wij*(1-pc)}  

B2<-M_marg_sum*(1-p0) #matrix {(wi.+w.j)*(1-p0)} with wi.=sum_j(wij*p.j)  

B<-sum(M_prob*(B1-B2)^2)  

#double summation within the curly brackets of the formula 8, page 324  

C<- (p0*pc-2*pc+p0)^2 # second addendun within the square brackets { } of the previously quoted formula 8, 

page 324, [50]  

var_K<-A*(B-C)  

if (var_K<0 | is.nan(var_K)) var_K<-0  

out1<-cbind(size=n,po=p0, pe=pc,kappa=kappa,var_K=var_K)  

return(out)  

}  
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Table SS1: Sample Sizes for k0, kA, marginal of a 2x2 contingency table, α = 0.05, and power = 0.80. 

k0 kA  
SS-Flack SS-Donner SS-A&C-max SS-A&C-min SS-Flack-min 

1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 

0.4 0.45 0.5 0.5 2,042 2,597 2,078 2,638 2,042 2,597 2,042 2,597 2,042 2,597 

0.4 0.50 0.5 0.5 501 638 520 660 501 638 501 638 501 638 

0.4 0.60 0.5 0.5 119 153 130 165 119 153 119 153 119 153 

0.4 0.70 0.5 0.5 50 64 58 74 50 64 50 64 50 64 

0.4 0.80 0.5 0.5 26 34 33 42 26 34 26 34 26 34 

0.4 0.90 0.5 0.5 15 19 21 27 15 19 15 19 15 19 

0.4 0.95 0.5 0.5 11 15 18 22 11 15 11 15 11 15 

0.5 0.55 0.5 0.5 1,811 2,305 1,855 2,355 1,811 2,305 1,811 2,305 1,811 2,305 

0.5 0.60 0.5 0.5 441 563 464 589 441 563 441 563 441 563 

0.5 0.70 0.5 0.5 103 133 116 148 103 133 103 133 103 133 

0.5 0.80 0.5 0.5 42 54 52 66 42 54 42 54 42 54 

0.5 0.90 0.5 0.5 21 27 29 37 21 27 21 27 21 27 

0.5 0.95 0.5 0.5 15 19 23 30 15 19 15 19 15 19 

0.6 0.65 0.5 0.5 1,530 1,950 1,583 2,010 1,530 1,950 1,530 1,950 1,530 1,950 

0.6 0.70 0.5 0.5 368 471 396 503 368 471 368 471 368 471 

0.6 0.80 0.5 0.5 83 108 99 126 83 108 83 108 83 108 

0.6 0.90 0.5 0.5 32 42 44 56 32 42 32 42 32 42 

0.6 0.95 0.5 0.5 21 28 33 42 21 28 21 28 21 28 

0.4 0.45 0.6 0.4 2,121 2,698 2,148 2,727 2,121 2,698 2,121 2,698 2,121 2,698 

0.4 0.50 0.6 0.4 520 663 537 682 520 663 520 663 520 663 

0.4 0.60 0.6 0.4 124 159 135 171 124 159 124 159 124 159 

0.4 0.70 0.6 0.4 52 67 60 76 52 67 52 67 52 67 

0.4 0.80 0.6 0.4 27 35 34 43 27 35 27 35 27 35 

0.4 0.90 0.6 0.4 15 20 22 28 15 20 15 20 15 20 

0.4 0.95 0.6 0.4 11 15 18 23 11 15 11 15 11 15 

0.5 0.55 0.6 0.4 1,887 2,402 1,924 2,442 1,887 2,402 1,887 2,402 1,887 2,402 

0.5 0.60 0.6 0.4 459 586 481 611 459 586 459 586 459 586 

0.5 0.70 0.6 0.4 107 138 121 153 107 138 107 138 107 138 

0.5 0.80 0.6 0.4 44 57 54 68 44 57 44 57 44 57 
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k0 kA  
SS-Flack SS-Donner SS-A&C-max SS-A&C-min SS-Flack-min 

1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 

0.5 0.90 0.6 0.4 21 28 31 39 21 28 21 28 21 28 

0.5 0.95 0.6 0.4 15 20 24 31 15 20 15 20 15 20 

0.6 0.65 0.6 0.4 1,597 2,035 1,645 2,088 1,597 2,035 1,597 2,035 1,597 2,035 

0.6 0.70 0.6 0.4 384 492 412 522 384 492 384 492 384 492 

0.6 0.80 0.6 0.4 87 113 103 131 87 113 87 113 87 113 

0.6 0.90 0.6 0.4 33 44 46 58 33 44 33 44 33 44 

0.6 0.95 0.6 0.4 22 29 34 43 22 29 22 29 22 29 

0.4 0.45 0.8 0.2 3,110 3,953 3,032 3,849 3,110 3,953 3,110 3,953 3,110 3,953 

0.4 0.50 0.8 0.2 766 975 758 963 766 975 766 975 766 975 

0.4 0.60 0.8 0.2 183 235 190 241 183 235 183 235 183 235 

0.4 0.70 0.8 0.2 77 99 85 107 77 99 77 99 77 99 

0.4 0.80 0.8 0.2 39 51 48 61 39 51 39 51 39 51 

0.4 0.90 0.8 0.2 22 29 31 39 22 29 22 29 22 29 

0.4 0.95 0.8 0.2 16 22 26 32 16 22 16 22 16 22 

0.5 0.55 0.8 0.2 2,839 3,612 2,783 3,532 2,839 3,612 2,839 3,612 2,839 3,612 

0.5 0.60 0.8 0.2 692 883 696 883 692 883 692 883 692 883 

0.5 0.70 0.8 0.2 162 208 174 221 162 208 162 208 162 208 

0.5 0.80 0.8 0.2 66 85 78 99 66 85 66 85 66 85 

0.5 0.90 0.8 0.2 32 42 44 56 32 42 32 42 32 42 

0.5 0.95 0.8 0.2 22 30 35 44 22 30 22 30 22 30 

0.6 0.65 0.8 0.2 2,437 3,105 2,418 3,069 2,437 3,105 2,437 3,105 2,437 3,105 

0.6 0.70 0.8 0.2 586 750 605 768 586 750 586 750 586 750 

0.6 0.80 0.8 0.2 133 172 152 192 133 172 133 172 133 172 

0.6 0.90 0.8 0.2 51 67 68 86 51 67 51 67 51 67 

0.6 0.95 0.8 0.2 33 44 50 63 33 44 33 44 33 44 

0.4 0.45 0.9 0.1 5,418 6,883 5,092 6,465 5,418 6,883 5,418 6,883 5,418 6,883 

0.4 0.50 0.9 0.1 1338 1,702 1,273 1,617 1,338 1,702 1,338 1,702 1,338 1,702 

0.4 0.60 0.9 0.1 321 411 319 405 321 411 321 411 321 411 

0.4 0.70 0.9 0.1 134 173 142 180 134 173 134 173 134 173 

0.4 0.80 0.9 0.1 69 89 80 102 69 89 69 89 69 89 

0.4 0.90 0.9 0.1 38 50 51 65 38 50 38 50 38 50 
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k0 kA  
SS-Flack SS-Donner SS-A&C-max SS-A&C-min SS-Flack-min 

1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 

0.4 0.95 0.9 0.1 28 38 43 54 28 38 28 38 28 38 

0.5 0.55 0.9 0.1 5,060 6,437 4,786 6,076 5,060 6,437 5,060 6,437 5,060 6,437 

0.5 0.60 0.9 0.1 1,235 1,576 1,197 1,519 1,235 1,576 1,235 1,576 1,235 1,576 

0.5 0.70 0.9 0.1 289 372 300 380 289 372 289 372 289 372 

0.5 0.80 0.9 0.1 117 152 133 169 117 152 117 152 117 152 

0.5 0.90 0.9 0.1 57 75 75 95 57 75 57 75 57 75 

0.5 0.95 0.9 0.1 40 53 60 76 40 53 40 53 40 53 

0.6 0.65 0.9 0.1 4,397 5,602 4,221 5,359 4,397 5,602 4,397 5,602 4,397 5,602 

0.6 0.70 0.9 0.1 1,058 1,354 1,056 1,340 1,058 1,354 1,058 1,354 1,058 1,354 

0.6 0.80 0.9 0.1 239 309 264 335 239 309 239 309 239 309 

0.6 0.90 0.9 0.1 91 120 118 149 91 120 91 120 91 120 

0.6 0.95 0.9 0.1 59 79 87 110 59 79 59 79 59 79 

SS-A&C-full are the same as SS-A&C-max and SS-A&C-min.
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Table SS2: Sample Sizes for k0, kA, marginal of a 3x3 contingency table, α = 0.05, and power = 0.80. 

k0 kA 1 2 3 

SS-Flack SS-Donner SS-A&C-max SS-A&C-min SS-Flack-min 

1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 

0.4 0.45 0.33 0.33 0.33 1,321 1,679 1,336 1,696 1,321 1,679 1,321 1,679 1,321 1,679 

0.4 0.50 0.33 0.33 0.33 326 415 334 424 326 415 326 415 326 415 

0.4 0.60 0.33 0.33 0.33 79 100 84 106 79 100 79 100 79 100 

0.4 0.70 0.33 0.33 0.33 33 43 38 48 33 43 33 43 33 43 

0.4 0.80 0.33 0.33 0.33 17 22 21 27 17 22 17 22 17 22 

0.4 0.90 0.33 0.33 0.33 10 13 14 17 10 13 10 13 10 13 

0.4 0.95 0.33 0.33 0.33 7 10 12 15 7 10 7 10 7 10 

0.5 0.55 0.33 0.33 0.33 1,214 1,544 1,237 1,570 1,214 1,544 1,214 1,544 1,214 1,544 

0.5 0.60 0.33 0.33 0.33 297 378 310 393 297 378 297 378 297 378 

0.5 0.70 0.33 0.33 0.33 70 90 78 99 70 90 70 90 70 90 

0.5 0.80 0.33 0.33 0.33 29 37 35 44 29 37 29 37 29 37 

0.5 0.90 0.33 0.33 0.33 14 19 20 25 14 19 14 19 14 19 

0.5 0.95 0.33 0.33 0.33 10 13 16 20 10 13 10 13 10 13 

0.6 0.65 0.33 0.33 0.33 1,057 1,346 1,089 1,382 1,057 1,346 1,057 1,346 1,057 1,346 

0.6 0.70 0.33 0.33 0.33 255 326 273 346 255 326 255 326 255 326 

0.6 0.80 0.33 0.33 0.33 58 75 69 87 58 75 58 75 58 75 

0.6 0.90 0.33 0.33 0.33 22 29 31 39 22 29 22 29 22 29 

0.6 0.95 0.33 0.33 0.33 15 20 23 29 15 20 15 20 15 20 

0.4 0.45 0.50 0.25 0.25 1,551 1,972 1,429 1,814 1,426 1,812 1,426 1,812 926 1,174 

0.4 0.50 0.50 0.25 0.25 381 486 358 454 352 448 352 448 233 295 

0.4 0.60 0.50 0.25 0.25 91 117 90 114 85 108 85 108 58 73 

0.4 0.70 0.50 0.25 0.25 38 49 40 51 36 46 36 46 25 32 

0.4 0.80 0.50 0.25 0.25 20 26 23 29 19 24 19 24 13 17 

0.4 0.90 0.50 0.25 0.25 11 15 15 19 11 14 11 14 7 10 

0.4 0.95 0.50 0.25 0.25 8 11 12 15 8 10 8 10 6 7 

0.5 0.55 0.50 0.25 0.25 1,398 1,779 1,325 1,682 1,311 1,667 1,311 1,667 963 1,223 

0.5 0.60 0.50 0.25 0.25 341 435 332 421 320 409 320 409 239 304 

0.5 0.70 0.50 0.25 0.25 80 103 83 106 76 97 76 97 58 74 

0.5 0.80 0.50 0.25 0.25 33 42 37 47 31 40 31 40 24 31 
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k0 kA 1 2 3 

SS-Flack SS-Donner SS-A&C-max SS-A&C-min SS-Flack-min 

1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 

0.5 0.90 0.50 0.25 0.25 16 21 21 27 15 20 15 20 12 15 

0.5 0.95 0.50 0.25 0.25 11 15 17 21 11 14 11 14 8 11 

0.6 0.65 0.50 0.25 0.25 1,196 1,523 1,167 1,481 1,140 1,452 1,140 1,452 919 1,168 

0.6 0.70 0.50 0.25 0.25 288 368 292 371 275 352 275 352 224 286 

0.6 0.80 0.50 0.25 0.25 65 85 73 93 63 81 63 81 52 67 

0.6 0.90 0.50 0.25 0.25 25 33 33 42 24 32 24 32 20 26 

0.6 0.95 0.50 0.25 0.25 16 22 24 31 16 21 16 21 13 17 

0.4 0.45 0.60 0.30 0.10 2,058 2,618 1,699 2,157 1,719 2,185 1,719 2,185 1,098 1,396 

0.4 0.50 0.60 0.30 0.10 504 642 425 540 424 539 424 539 271 345 

0.4 0.60 0.60 0.30 0.10 120 153 107 135 102 130 102 130 65 83 

0.4 0.70 0.60 0.30 0.10 50 64 48 60 43 55 43 55 28 36 

0.4 0.80 0.60 0.30 0.10 26 34 27 34 22 29 22 29 15 20 

0.4 0.90 0.60 0.30 0.10 15 19 17 22 12 16 12 16 9 11 

0.4 0.95 0.60 0.30 0.10 11 15 15 18 9 12 9 12 7 9 

0.5 0.55 0.60 0.30 0.10 1,801 2,293 1,572 1,996 1,572 2,000 1,572 2,000 1,002 1,275 

0.5 0.60 0.60 0.30 0.10 437 559 393 499 384 490 384 490 245 312 

0.5 0.70 0.60 0.30 0.10 102 131 99 125 90 116 90 116 60 77 

0.5 0.80 0.60 0.30 0.10 41 54 44 56 37 48 37 48 25 33 

0.5 0.90 0.60 0.30 0.10 20 27 25 32 18 24 18 24 13 16 

0.5 0.95 0.60 0.30 0.10 14 19 20 25 13 17 13 17 9 12 

0.6 0.65 0.60 0.30 0.10 1,501 1,913 1,378 1,750 1,359 1,731 1,359 1,731 875 1,114 

0.6 0.70 0.60 0.30 0.10 360 461 345 438 328 419 328 419 217 276 

0.6 0.80 0.60 0.30 0.10 81 105 87 110 75 96 75 96 51 66 

0.6 0.90 0.60 0.30 0.10 31 41 39 49 29 38 29 38 20 26 

0.6 0.95 0.60 0.30 0.10 20 27 29 36 19 25 19 25 13 17 

0.4 0.45 0.80 0.10 0.10 2,893 3,677 2,589 3,287 2,731 3,470 2,731 3,470 200 244 

0.4 0.50 0.80 0.10 0.10 714 908 648 822 675 859 675 859 66 79 

0.4 0.60 0.80 0.10 0.10 171 219 162 206 163 208 163 208 22 25 

0.4 0.70 0.80 0.10 0.10 72 92 72 92 68 87 68 87 10 12 

0.4 0.80 0.80 0.10 0.10 37 48 41 52 35 46 35 46 6 7 

0.4 0.90 0.80 0.10 0.10 21 27 26 33 20 26 20 26 3 4 
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k0 kA 1 2 3 

SS-Flack SS-Donner SS-A&C-max SS-A&C-min SS-Flack-min 

1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 

0.4 0.95 0.80 0.10 0.10 15 20 22 28 14 19 14 19 2 2 

0.5 0.55 0.80 0.10 0.10 2,671 3,398 2,449 3,109 2,554 3,249 2,554 3,249 690 867 

0.5 0.60 0.80 0.10 0.10 652 831 613 778 624 796 624 796 184 229 

0.5 0.70 0.80 0.10 0.10 153 196 154 195 147 188 147 188 49 60 

0.5 0.80 0.80 0.10 0.10 62 80 69 87 59 77 59 77 21 26 

0.5 0.90 0.80 0.10 0.10 30 40 39 49 29 38 29 38 10 13 

0.5 0.95 0.80 0.10 0.10 21 28 31 39 20 27 20 27 7 9 

0.6 0.65 0.60 0.30 0.10 2,307 2,939 2,174 2,760 2,231 2,842 2,231 2,842 1,010 1,278 

0.6 0.70 0.60 0.30 0.10 555 710 544 690 538 688 538 688 255 323 

0.6 0.80 0.60 0.30 0.10 126 162 136 173 122 158 122 158 62 78 

0.6 0.90 0.60 0.30 0.10 48 63 61 77 46 61 46 61 24 31 

0.6 0.95 0.60 0.30 0.10 31 42 45 57 30 40 30 40 15 20 

SS-A&C-full are the same as SS-A&C-max and SS-A&C-min. 
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Table SS3: Sample Sizes for k0, kA, marginal of a 4x4 contingency table, α = 0.05, and power = 0.80. 

k0 kA 1 2 3 4 

SS-Flack SS-Donner SS-A&C-max SS-A&C-min SS-Flack-min 

1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 

0.4 0.45 0.25 0.25 0.25 0.25 1,081 1,373 1,089 1,382 1,081 1,373 1,081 1,373 1,081 1,373 

0.4 0.50 0.25 0.25 0.25 0.25 268 340 273 346 268 340 268 340 268 340 

0.4 0.60 0.25 0.25 0.25 0.25 65 83 69 87 65 83 65 83 65 83 

0.4 0.70 0.25 0.25 0.25 0.25 28 35 31 39 28 35 28 35 28 35 

0.4 0.80 0.25 0.25 0.25 0.25 14 19 18 22 14 19 14 19 14 19 

0.4 0.90 0.25 0.25 0.25 0.25 8 11 11 14 8 11 8 11 8 11 

0.4 0.95 0.25 0.25 0.25 0.25 6 8 9 12 6 8 6 8 6 8 

0.5 0.55 0.25 0.25 0.25 0.25 1,015 1,290 1,031 1,309 1,015 1,290 1,015 1,290 1,015 1,290 

0.5 0.60 0.25 0.25 0.25 0.25 249 317 258 328 249 317 249 317 249 317 

0.5 0.70 0.25 0.25 0.25 0.25 59 76 65 82 59 76 59 76 59 76 

0.5 0.80 0.25 0.25 0.25 0.25 24 31 29 37 24 31 24 31 24 31 

0.5 0.90 0.25 0.25 0.25 0.25 12 16 17 21 12 16 12 16 12 16 

0.5 0.95 0.25 0.25 0.25 0.25 9 11 13 17 9 11 9 11 9 11 

0.6 0.65 0.25 0.25 0.25 0.25 899 1,145 924 1,173 899 1,145 899 1,145 899 1,145 

0.6 0.70 0.25 0.25 0.25 0.25 218 278 231 294 218 278 218 278 218 278 

0.6 0.80 0.25 0.25 0.25 0.25 50 64 58 74 50 64 50 64 50 64 

0.6 0.90 0.25 0.25 0.25 0.25 19 25 26 33 19 25 19 25 19 25 

0.6 0.95 0.25 0.25 0.25 0.25 13 17 19 24 13 17 13 17 13 17 

0.4 0.45 0.4 0.3 0.2 0.1 1,520 1,934 1,197 1,519 1,208(-10) 1,535(-13) 1,194(4) 1,517(5) 811 1,029 

0.4 0.50 0.4 0.3 0.2 0.1 372 475 300 380 299(-3) 380(3) 295(1) 376(1) 203 258 

0.4 0.60 0.4 0.3 0.2 0.1 89 114 75 95 72 92(1) 71(1) 91 50 64 

0.4 0.70 0.4 0.3 0.2 0.1 37 48 34 43 31(-1) 39 30 39 22 28 

0.4 0.80 0.4 0.3 0.2 0.1 19 25 19 24 16 21(1) 16 20 12 15 

0.4 0.90 0.4 0.3 0.2 0.1 11 14 12 16 9 12 9 12 7 9 

0.4 0.95 0.4 0.3 0.2 0.1 8 11 10 13 7 9 7 9 5 6 

0.5 0.55 0.4 0.3 0.2 0.1 1,337 1,702 1,128 1,432 1,123(-6) 1,428(-7) 1,115(2) 1,417(4) 812 1,031 

0.5 0.60 0.4 0.3 0.2 0.1 325 415 282 358 275(-1) 350(-1) 273(1) 348(1) 201 255 

0.5 0.70 0.4 0.3 0.2 0.1 76 98 71 90 65 83 65 83 48 62 

0.5 0.80 0.4 0.3 0.2 0.1 31 40 32 40 27 34 27 34 20 26 

0.5 0.90 0.4 0.3 0.2 0.1 15 20 18 23 13 17 13 17 10 13 
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k0 kA 1 2 3 4 

SS-Flack SS-Donner SS-A&C-max SS-A&C-min SS-Flack-min 

1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 

0.5 0.95 0.4 0.3 0.2 0.1 11 14 14 18 9 12 9 12 7 9 

0.6 0.65 0.4 0.3 0.2 0.1 1,121 1,428 1,006 1,278 986(-3) 1,256(-4) 982(1) 1,251(1) 758 965 

0.6 0.70 0.4 0.3 0.2 0.1 269 345 252 320 238 305(-1) 238 304 185 236 

0.6 0.80 0.4 0.3 0.2 0.1 61 79 63 80 55(-1) 70 54 70 43 56 

0.6 0.90 0.4 0.3 0.2 0.1 23 31 28 36 21 28 21 28 17 22 

0.6 0.95 0.4 0.3 0.2 0.1 15 20 21 27 14 18 14 18 11 15 

0.4 0.45 0.6 0.2 0.1 0.1 1,889 2,403 1,463 1,857 1,511(-12) 1,920(-15) 1,496(3) 1,901(4) 513 646 

0.4 0.50 0.6 0.2 0.1 0.1 463 590 366 465 373(-2) 475(-4) 370(1) 471 134 168 

0.4 0.60 0.6 0.2 0.1 0.1 110 141 92 117 90 115(-1) 89(1) 114 35 44 

0.4 0.70 0.6 0.2 0.1 0.1 46 59 41 52 38 49(-1) 38 48 16 20 

0.4 0.80 0.6 0.2 0.1 0.1 24 31 23 30 20 26(-1) 20 25 9 11 

0.4 0.90 0.6 0.2 0.1 0.1 13 18 15 19 11 15(-1) 11 14 5 6 

0.4 0.95 0.6 0.2 0.1 0.1 10 13 13 16 8 11 8 11 4 5 

0.5 0.55 0.6 0.2 0.1 0.1 1,665 2,120 1,384 1,757 1,405(-6) 1,788(-9) 1,397(2) 1,777(2) 658 833 

0.5 0.60 0.6 0.2 0.1 0.1 405 517 346 440 344(-2) 438(-2) 342 436 167 211 

0.5 0.70 0.6 0.2 0.1 0.1 94 121 87 110 81 104 81 104 42 53 

0.5 0.80 0.6 0.2 0.1 0.1 38 50 39 49 33 43 33 43 18 23 

0.5 0.90 0.6 0.2 0.1 0.1 19 25 22 28 16 21 16 21 9 11 

0.5 0.95 0.6 0.2 0.1 0.1 13 18 18 22 12(-1) 15 11 15 6 8 

0.6 0.65 0.6 0.2 0.1 0.1 1,395 1,777 1,233 1,566 1,231(-3) 1,568(-5) 1,227(1) 1,562(1) 706 896 

0.6 0.70 0.6 0.2 0.1 0.1 335 429 309 392 297 380(-1) 296(1) 379 176 224 

0.6 0.80 0.6 0.2 0.1 0.1 76 98 78 98 68 88(-1) 68 87 42 54 

0.6 0.90 0.6 0.2 0.1 0.1 29 38 35 44 26 34 26 34 17 21 

0.6 0.95 0.6 0.2 0.1 0.1 19 25 26 32 17 23 17 23 11 14 

0.4 0.45 0.7 0.1 0.1 0.1 2,056 2,613 1,760 2,235 1,839 2,336 1,839 2,336 314 390 

0.4 0.50 0.7 0.1 0.1 0.1 506 645 440 559 455 579 455 579 89 109 

0.4 0.60 0.7 0.1 0.1 0.1 121 155 110 140 110 140 110 140 26 31 

0.4 0.70 0.7 0.1 0.1 0.1 51 65 49 63 46 59 46 59 12 14 

0.4 0.80 0.7 0.1 0.1 0.1 26 34 28 35 24 31 24 31 6 8 

0.4 0.90 0.7 0.1 0.1 0.1 15 19 18 23 13 18 13 18 4 4 

0.4 0.95 0.7 0.1 0.1 0.1 11 15 15 19 10 13 10 13 3 3 
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k0 kA 1 2 3 4 

SS-Flack SS-Donner SS-A&C-max SS-A&C-min SS-Flack-min 

1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 1-tailed 2-tailed 

0.5 0.55 0.7 0.1 0.1 0.1 1,881 2,393 1,676 2,128 1,726 2,196 1,726 2,196 644 812 

0.5 0.60 0.7 0.1 0.1 0.1 459 585 419 532 423 539 423 539 168 210 

0.5 0.70 0.7 0.1 0.1 0.1 108 138 105 133 100 128 100 128 43 54 

0.5 0.80 0.7 0.1 0.1 0.1 44 57 47 60 41 53 41 53 18 23 

0.5 0.90 0.7 0.1 0.1 0.1 21 28 27 34 20 26 20 26 9 11 

0.5 0.95 0.7 0.1 0.1 0.1 15 20 21 27 14 19 14 19 6 8 

0.6 0.65 0.7 0.1 0.1 0.1 1,617 2,061 1,498 1,902 1,517 1,932 1,517 1,932 813 1,030 

0.6 0.70 0.7 0.1 0.1 0.1 389 498 375 476 366 468 366 468 203 258 

0.6 0.80 0.7 0.1 0.1 0.1 88 114 94 119 83 108 83 108 49 62 

0.6 0.90 0.7 0.1 0.1 0.1 34 44 42 53 32 42 32 42 19 24 

0.6 0.95 0.7 0.1 0.1 0.1 22 29 31 39 21 28 21 28 12 16 

SS-A&C-full is lower than SS-A&C-max in 32 (22.2%) cases and greater than SS-A&C-min in 20 (13.9%) cases (difference 

shown between brackets); SS-A&C-full is equal in the remaining 112 (77.8%) and 124 (86.1%) cases, respectively. 
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Table SIM.1A: Simulation study on 3x3 table. Descriptive statistics of bias, absolute bias and percent bias for k0, kA and 

coverage. The two sample sizes, calculated for a power of 0.80 and 0.90, are considered as a whole and for each power value. 

Variable 

Mean 

(SD) 

Lower-Upper 

95% CI 

Median 

Min; Q1; Q3;Max 

 

k0 Bias (All) 

-0.006874 

(0.003905) 

-0.008007; 

-0.005739 

-0.006766 -0.016063; -0.009346;-0.003202;-0.001130 

k0 Bias 

(power = 0.80) 

-0.007588 

(0.004099) 

-0.009317; 

-0.005856 

-0.007674 -0.016063; -0.010473; -0.003339; -0.001860 

k0 Bias 

(power = 0.90) 

-0.006160 

(0.003647) 

-0.007699; 

-0.004620 

-0.006151 -0.012819; -0.008971; -0.002511; -0.001130 

%k0 Bias (All) 

-1.393691 

(0.780862) 

-1.620429; 

-1.166952 

-1.415729 -3.485200; -1.960566; -0.606375; -0.205600 

%k0 Bias 

(power = 0.80) 

-1.543668 

(0.831957) 

-1.894972; 

-1.192362 

-1.470725 -3.485200; -2.098204; -0.752820; -0.465000 

%k0 Bias 

(power = 0.90) 

-1.243714 

(0.711973) 

-1.544353; 

-0.943073 

-1.357725 -2.649300; -1.859612; -0.495470; -0.205600 

k0 Abs.Bias (All) 

0.006874 

(0.003905) 

0.005739; 

0.008007 

0.006766 0.001130; 0.003202; 0.009346; 0.016063 

k0 Abs.Bias 

(power = 0.80) 

0.007587 

(0.004099) 

0.005856 

0.009317 

0.007674 0.001860; 0.003339; 0.010473; 0.016063 

k0 Abs.Bias 

(power = 0.90) 

0.006160 

(0.003646) 

0.004620 

0.007699 

0.006151 0.001130; 0.002511; 0.008971; 0.012819 

%k0 Abs.Bias (All) 

1.393691 

(0.780862) 

1.166952 

1.620429 

1.415729 0.205600; 0.606375; 1.960566; 3.485200 

%k0 Abs.Bias 

(power = 0.80) 

1.543668 

(0.831957) 

1.192362 

1.894972 

1.470725 0.465000; 0.752820; 2.098204; 3.485200 

%k0 Abs.Bias 

(power = 0.90) 

1.243714 

(0.711973) 

0.943073 

1.544353 

1.357725 0.205600; 0.495470; 1.859612; 2.649300 

kA Bias (All) 

-0.003596 

(0.001938) 

-0.004158; 

-0.003033 

-0.002821 -0.008565; -0.004654; -0.002192; -0.001079 

kA Bias 

(power = 0.80) 

-0.003984 

(0.002079) 

-0.004861; 

-0.003105 

-0.003153 -0.008565; -0.005608; -0.002518; -0.001328 

kA Bias 

(power = 0.90) 

-0.003209 

(0.001743) 

-0.003944; 

-0.002473 

-0.002394 -0.007202; -0.004616 -0.001885; -0.001079 
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%kA Bias (All) 

-0.464093 

(0.256484) 

-0.538568; 

-0.389617 

-0.350172 -1.070687; -0.664878; -0.264617; -0.134887 

%kA Bias 

(power = 0.80) 

-0.514539 

(0.276899) 

-0.631464; 

-0.397615 

-0.416925 -1.070687; -0.746368; -0.297283; -0.145021 

%kA Bias 

(power = 0.90) 

-0.413646 

(0.229006) 

-0.510346; 

-0.316945 

-0.307175 -0.900262; -0.659500; -0.245342; -0.134887 

kA Abs.Bias (All) 

0.003596 

(0.001938) 

0.003033; 

0.004158 

0.002821 0.001079; 0.002192; 0.004654; 0.008565 

kAAbs.Bias 

(power=0.80) 

0.003984 

(0.002079) 

0.003105; 

0.004861 

0.003153 0.001328; 0.002518; 0.005608; 0.008565 

kA Abs.Bias 

(power=0.90) 

0.003209 

(0.001743) 

0.002473; 

0.003944 

0.002394 0.001079; 0.001885; 0.004616; 0.007202 

%kA Abs.Bias (All) 

0.464093 

(0.256484) 

0.389617; 

0.538568 

0.350172 0.134887; 0.264617; 0.664878; 1.070687 

%kA Abs.Bias 

(power=0.80) 

0.514539 

(0.276899) 

0.397615; 

0.631464 

0.416925 0.145021; 0.297283; 0.746368; 1.070687 

%kA Abs.Bias 

(power=0.90) 

0.413646 

(0.229006) 

0.316945; 

0.510346 

0.307175 0.134887; 0.245342; 0.659500; 0.900262 

Coverage Bias (All) 

-0.018017 

(0.010990) 

-0.021207; 

-0.014825 

-0.017050 -0.043700; -0.025500; -0.008500; -0.003800 

Coverage Bias 

(power=0.80) 

-0.020550 

(0.012121) 

-0.025668; 

-0.015432 

-0.020900 -0.043700; -0.028450; -0.010000; -0.004100 

Coverage Bias 

(power=0.90) 

-0.015483 

(0.009301) 

-0.019410; 

-0.011555 

-0.016700 -0.036900;-0.018800;-0.008000;-0.003800 

%Coverage Bias 

(All) 

-1.896491 

(1.156848) 

-2.232405; 

-1.560577 

-1.794736 -4.600000; -2.684210; -0.894736; -0.400000 

%Coverage Bias 

(power=0.80) 

-2.163158 

(1.275840) 

-2.701898; 

-1.624417 

-2.200000 -4.600000; -2.994736; -1.052631; -0.431578 

%Coverage Bias 

(power=0.90) 

-1.629825 

(0.979086) 

-2.043256; 

-1.216392 

-1.757894 -3.884210; -1.978947; -0.842105; -0.400000 

Coverage Abs.Bias 

(All) 

0.018017 

(0.010990) 

0.014825; 

0.021207 

0.017050 0.003800; 0.0085000; 0.025500; 0.043700 

Coverage Abs.Bias 

(power=0.80) 

0.020550 

(0.012121) 

0.015432; 

0.025668 

0.020900 0.004100; 0.010000; 0.028450; 0.043700 
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Coverage Abs.Bias 

(power=0.90) 

0.015483 

(0.009301) 

0.011555; 

0.019410 

0.016700 0.003800; 0.008000; 0.018800; 0.036900 

%Coverage 

Abs.Bias 

(All) 

1.896491 

(1.156848) 

1.560577; 

2.232405 

1.794736 0.400000; 0.894736;2.684210;4.600000 

%Coverage 

Abs.Bias 

(power=0.80) 

2.163158 

(1.275840) 

1.624417; 

2.701898 

2.200000 0.4315789; 1.052631; 2.994736; 4.600000 

%Coverage 

Abs.Bias 

(power=0.90) 

1.629825 

(0.979086) 

1.216392; 

2.043256 

1.757894 0.400000; 0.842105; 1.978947; 3.884210 
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Table SIM.1B: Table3x3: descriptive statistics of the bias, absolute bias and percent bias for the power. The two power values of 

0.80 and 0.90 are considered separately. 

Variable Mean(SD) 

Lower-Upper 

95%CI 

Median Min; Q1; Q3; Max 

Bias Power0.80 

0.077450 

(0.047589) 

0.057354; 

0.097545 

0.068200 0.010500; 0.042550; 0.118750; 0.167700 

Bias Power0.90 

0.032587 

(0.023486) 

0.022669; 

0.042505 

0.028500 -0.004800; 0.015150;0 .056300; 0.071900 

%Bias Power0.80 

9.681250 

(5.948723) 

7.169324; 

12.193175 

8.525000 1.312500; 5.318750; 14.843750; 20.962500 

%Bias Power0.90 

3.620833 

(2.609632) 

2.518882; 

4.722784 

3.166666 -0.533333; 1.683333; 6.255555; 7.988888 

Abs.Bias 

(Power0.80) 

0.077450 

(0.047589) 

0.057354; 

0.097545 

0.068200 0.010500; 0.042550; 0.118750; 0.167700 

Abs.Bias 

(Power0.90) 

0.033245 

(0.022503) 

0.023743; 

0.042748 

0.028500 0.001100; 0.015150; 0.056300; 0.071900 

%Abs.Bias 

(Power0.80) 

9.681250 

(5.948723) 

7.169324; 

12.193175 

8.525000 1.312500; 5.318750; 14.843750; 20.962500 

%Abs.Bias 

(Power0.90) 

3.693981 

(2.500370) 

2.638167; 

4.749795 

3.166666 0.122222; 1.683333; 6.255555; 7.988888 

SD = Standard deviation,Q1 and Q3=first and third quartile, respectively. 
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Table SIM.2A: Simulation study on 4x4 table. Descriptive statistics of bias, absolute bias and percent bias for k0, kA and 

coverage. The two sample sizes, calculated for a power of 0.80 and 0.90, are considered as a whole and for each power value. 

Variable Mean(SD) 

Lower-Upper 

95%CI 

Median Min; Q1; Q3; Max 

k0 Bias (All) 

-0.005907 

(0.005105) 

-0.007389; 

-0.004424 

-0.004883 -0.019671; -0.009196; -0.001939; 0.002820 

k0 Bias 

(power=0.80) 

-0.006622 

(0.005937) 

-0.009129; 

-0.004114 

-0.006003 -0.019671; -0.010656; -0.002150; 0.002820 

k0 Bias 

(power=0.90) 

-0.005192 

(0.004116) 

-0.006930; 

-0.003454 

-0.004709 -0.013749; -0.007920; -0.001764; 0.001112 

%k0 Bias (All) 

-1.211066 

(1.120276) 

-1.536360; 

-0.885771 

-0.876641 -4.917850; -1.769454; -0.440987;0 .705025 

%k0 Bias 

(power=0.80) 

-1.374657 

(1.301142) 

-1.924081; 

-0.825233 

-1.131550 -4.917850; -2.228579; -0.537725; 0.705025 

%k0 Bias 

(power=0.90) 

-1.047474 

(0.903205) 

-1.428864; 

-0.666084 

-0.847708 -3.437450; -1.474237; -0.406254; 0.278150 

k0 Abs.Bias (All) 

0.006071 

(0.004905) 

0.004646 

0.007495 

0.004883 0.0000776; 0.002150; 0.009196; 0.019671 

k0 Abs.Bias 

(power=0.80) 

0.006857 

(0.005652) 

0.004470; 

0.009243 

0.006003 0.0001931; 0.002322; 0.010656; 0.019671 

k0 Abs.Bias 

(power=0.90) 

0.005285 

(0.003991) 

0.003599; 

0.006970 

0.004709 0.0000776; 0.001764; 0.007920; 0.013749 

%k0 Abs.Bias (All) 

1.252031 

(1.073298) 

0.940378; 

1.563685 

0.876641 0.019400; 0.484812; 1.769454; 4.917850 

%k0 Abs.Bias 

(power=0.80) 

1.433409 

(1.233215) 

0.912668; 

1.954150 

1.131550; 0.032183; 0.560612; 2.228579; 4.917850 

%k0 Abs.Bias 

(power=0.90) 

1.070653 

(0.874384) 

0.701433; 

1.439874 

0.847708 0.019400; 0.406254; 1.474237; 3.437450 

kA Bias (All) 

0.007687 

(0.029336) 

-0.000830; 

0.016206 

-0.002044 -0.009640; -0.003351; -0.000652; 0.098868 

kA Bias 

(power=0.80) 

0.007286 

(0.029792) 

-0.005293; 

0.019866 

-0.002420 -0.009640; -0.003681; -0.000656; 0.098868 

kA Bias 

(power=0.90) 

0.008089 

(0.029508) 

-0.004371; 

0.020549 

-0.001792 -0.005858; -0.003211; -0.000620; 0.098160 
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%kA Bias (All) 

0.910636 

(3.641532) 

-0.146754; 

1.968026 

-0.248581 -1.227200; -0.486185; -0.078649; 12.358512 

%kA Bias 

(power=0.80) 

0.849386 

(3.701895) 

-0.713787; 

2.412559 

-0.288198 -1.227200; -0.604650; -0.069131; 12.358512 

%kA Bias 

(power=0.90) 

0.971886 

(3.658716) 

-0.573054; 

2.516826 

-0.225488 -0.836928; -0.451283; -0.086266; 12.270000 

kA Abs.Bias (All) 

0.012590 

(0.027551) 

0.004590; 

0.020590 

0.002651 0.0000542; 0.001363; 0.005011; 0.098868 

kA Abs.Bias 

(power=0.80) 

0.012998 

(0.027688) 

0.001306; 

0.024690 

0.002864 0.0002192; 0.001430; 0.007061; 0.098868 

kA Abs.Bias 

(power=0.90) 

0.012183 

(0.028002) 

0.000358; 

0.024007 

0.002520 0.0000542; 0.001295; 0.004007; 0.098160 

%kA Abs.Bias (All) 

1.568907 

(3.404969) 

0.580207; 

2.557607 

0.378128 0.006775; 0.170962; 0.691685; 12.358512 

%kA Abs.Bias 

(power=0.80) 

1.630192 

(3.418154) 

0.186832; 

3.073552 

0.429830 0.023073; 0.169538; 0.934675; 12.358512 

Variable 

Mean 

(SD) 

Lower-Upper 

95% CI 

Median 

Min; Q1; Q3;Max 

 

%kA Abs.Bias 

(power=0.90) 

1.507621 

(3.464115) 

0.044854; 

2.970389 

0.319257 0.006775; 0.170962; 0.523843; 12.270000 

Coverage Bias 

(All) 

-0.017562 

(0.014708) 

-0.021833; 

-0.013291 

-0.014000 -0.049000; -0.031500; -0.006000; 0.010000 

Coverage Bias 

(power=0.80) 

-0.018291 

(0.014822) 

-0.024550; 

-0.012032 

-0.015500 -0.049000; -0.030000; -0.006500; 0.005000 

Coverage Bias 

(power=0.90) 

-0.016833 

(0.014875) 

-0.023114; 

-0.010552 

-0.013500 -0.048000; -0.032500; -0.005000; 0.010000 

%Coverage Bias (All) 

-1.848684 

(1.548250) 

-2.298249; 

-1.399119 

-1.473684 -5.157894; -3.315789; -0.631578; 1.052631 

%Coverage Bias 

(power=0.80) 

-1.925438 

(1.560218) 

-2.584261; 

-1.266616 

-1.631578 -5.157894; -3.157894; -0.684210; 0.526315 

%Coverage Bias 

(power=0.90) 

-1.771929 

(1.565823) 

-2.433119; 

-1.110740 

-1.421052 -5.052631; -3.421052; -0.526315; 1.052631 

Coverage Abs.Bias 

(All) 

0.018437 

(0.013570) 

0.014497; 

0.022378 

0.014000 0.0; 0.006500; 0.031500; 0.04900 
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Coverage Abs.Bias 

(power=0.80) 

0.019041 

(0.013801) 

0.013213; 

0.024869 

0.015500 0.001000; 0.006500; 0.030000; 0.049000 

Coverage Abs.Bias 

(power=0.90) 

0.017833 

(0.013605) 

0.012088; 

0.023578 

0.013500 0.0; 0.007000; 0.032500; 0.048000 

%Coverage 

Abs.Bias(All) 

1.940789 

(1.428503) 

1.525995; 

2.355583 

1.473684 0.0; 0.684210; 3.31578; 5.157894 

%Coverage Abs.Bias 

(power=0.80) 

2.004386 

(1.452770) 

1.390934; 

2.617837 

1.631578 0.105263; 0.684210; 3.157894; 5.157894 

%Coverage Abs.Bias 

(power=0.90) 

1.877193 

(1.432126) 

1.272459; 

2.481926 

1.421052 0.0; 0.736842; 3.421052; 5.052631 
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Table SIM.2B: Table4x4: descriptive statistics of the bias, absolute bias and percent bias for the power. The two power 

values of 0.80 and 0.90 are considered separately. 

Variable Mean(SD) 

Lower-Upper 

95%CI 

Median Min; Q1; Q3; Max 

Bias Power0.80 

0.087333 

(0.061442) 

0.061388; 

0.113278 

0.067500 0.004000; 0.038000; 0.148000; 0.198000 

Bias Power0.90 

0.041500 

(0.028664) 

0.029396; 

0.053603 

0.036500 0.001000; 0.017500; 0.066500; 0.099000 

%Bias Power0.80 

10.916666 

(7.680320) 

7.673551; 

14.159781 

8.437500 0.500000; 4.750000; 18.500000; 24.750000 

%BiasPower0.90 

4.611111 

(3.184941) 

3.266228; 

5.955994 

4.055555 0.111111; 1.944444; 7.3888889; 11.000000 

Abs. Bias 

(Power0.80) 

0.087333 

(0.061442) 

0.061388; 

0.113278 

0.067500 0.004000; 0.038000; 0.148000; 0.198000 

Abs. Bias 

(Power0.90) 

0.041500 

(0.028664) 

0.029396; 

0.053603 

0.036500 0.001000; 0.017500; 0.066500; 0.099000 

%Abs. Bias 

(Power0.80) 

10.916666 

(7.680320) 

7.673551; 

14.159781 

8.437500 0.500000; 4.750000; 18.500000; 24.750000 

%Abs. Bias 

(Power0.90) 

4.611111 

(3.184941) 

3.266228; 

5.955994 

4.055555 0.111111; 1.944444; 7.388888; 11.000000 

 


	In the R settings, the procedure lp(…) of the package lsSolve allows to obtain the solution of our maximization problem (https://CRAN.R-project.org/package=lpSolve).
	Furthermore, Indurkhya et al.’s paper [96] is not actually present and, consequently downloadable from the internet site (https://www.dgps.de/fachgruppen/methoden/mpr-online/) of the journal Methods of Psychological Research (MPR-online) among the thr...

