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ABSTRACT 

Lysosomes are ubiquitous throughout all cell-types of the body and an inherited or 

acquired metabolic defect can potentially be causative of a disease phenotype as 

occurs in several lysosomal storage diseases (LSD). Fabry disease (FD) is one of the 

most prevalent LSD and is characterised by a deficient activity of the lysosomal 

enzyme alpha-galactosidase A (GLA) which is unable to exert its catabolic and 

clearance functions, thus leading to the accumulation of a specific type of ceramides— 

globotriaosylceramides (Gb3) in lysosomes. Many complications arise from FD, 

affecting manly the cardio-renal axis, the nervous system and skin. Since, this condition 

affects multi-tissues and organ-systems there is an unmet need to investigate how the 

molecular landscape is modulated after a single trigger caused by a mutation in GLA.  

INTRODUCTION 

Collectively, lysosomal storage diseases (LSD) are estimated to occurinone per five 

thousand live births and represent a group of 50 monogenetic disorders [1], affecting 

the normal function within vesicular structures of cells, in particular lysosomes, with 

relevant local and systemic metabolic consequences throughout body. 

Fabry disease (FD) (Figure 1A) is a recessive inherited disorder with a prevalence of 

one per forty thousand male live births and is caused by a single mutation of the 

lysosomal enzyme alpha-galactosidase A (GLA) in the X-chromosome [2]. This 

condition is manifested by impairment of the GLA activity resulting inintra-lysosomal 

accumulation of globotriaosylceramide (Gb3) and other glycolipid derivatives across 

many cell-types throughout the body. This phenomenon triggers a cascade of events, 

from disruption at the cellular-level of basic metabolic processes to activation of the 

immune-system followed by inflammatory response that ultimately leads to increased 

susceptibility of renal, cardiac, cerebrovascular, and skin complications [2,3]. 

The lysosomal accumulation of these ceramides in the vascular endothelium is known to 

cause low blood perfusion and is accepted as the main overlapping clinical 

parameter found in many FD manifestations affecting the renal-heart axis, nervous 

system, and skin [4,5]. Additionally, many FD patients exhibits vascular trauma and 

recurrent thrombotic episodes mostly due to lower plasma levels of thrombomodulin 

and elevated levels of plasminogen activator inhibitor [4]. Moreover, FD patients are 

at high-risk of stroke due to compromised endothelium-dependent vasodilation 

prompted by concurrently altered levels of nitric oxide and impaired activity of 

endothelial nitric oxide synthase [5]. Therefore, renal-heart failure and stroke remain 

the main cause of death among FD patients [6,7]. The life-span of FD patients can be 

extended by renal replacement therapy (e.g. dialysis, kidney transplantation) and by 
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enzyme replacement therapy through the clinical routine use of 

agalsidase-alpha and agalsidase-beta that mimic GLA 

activity, and the first is being consistently reported as an 

improver of the renal-cardiac function and cerebrovascular-

flow [3,8]. 

Gene-disease associations (GDA) databases such as DisGeNET 

[9] (Figure 1B) use supportive evidence from the literature and 

other disease databases to prioritise GDA. For instance, the 

best scored genes associated with FD are the following: GLA,  

NAT8, NOS3, IL6, CRP, VDR, NAIP, NOS2, ICAM1 and SELE. 

Regarding superimposed genes associated with cardiovascular 

conditions, this list is: AGT, involved in cholesterol transport 

(APOA1, APOA4, APOH), platelet activation (FGA, RNASE1) 

degranulation (SERPINA3, ALB, TF), HBA1 and 

RNASE2.Likewise, overlapping genes in FD concerning renal 

conditions are: IL1A, VCAM1, PON1, IL1B, TNF, AGT, NOS3, 

NAT8, MGP, and G6PD. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CVD: Cardiovascular Diseases; RenDis: Renal Diseases; LySdis: Lysosomal Storage Diseases 

 

Previously we reported a systematic and systems biology-

derived approach in renal disease associated with FD [10], 

and found that perturbed biological processes are associated 

with activation of the acute inflammatory response, regulation 

of wound healing, extracellular matrix (ECM) remodelling, 

regulation of peptidase activity and cellular response to 

reactive oxygen species (ROS). Furthermore, the involvement of 

platelet activation (C1QTNF1, COL1A2, COL3A1, FGA, GP6, 

HSPB1, RNASE1, YWHAZ), initiated by binding of collagen 

(COL1A2, and COL3A1) to the platelet glycoprotein VI (GP6), 

leads to signal transduction through the involvement of FcR 

gamma-chain, the Src kinases and the linker for activation of T-

cell family member 1 (LAT) adapter protein, and consequently 

to the activation of phospholipase C gamma 2 (PLCG2) [11]. 

Ultimately, the process leads to the activation of the ligand-

binding function of integrin beta-3 to bind fibrinogen alpha 

chain (FGA). Subsequently platelet adhesion and aggregation 

are mediated, resulting in overall platelet spreading, granule 

secretion (degranulation), stabilisation of platelet adhesion and 

aggregation, and finally clot retraction. 

Moreover, we also described plateletgranule secretion with 

subsequent exocytosis of histamine and serotonin with further 

thrombus establishment at sites of vascular injury, a process 

relevant in the pathogenesis of many ischemic cardio- and 

cerebrovascular conditions [12,13]. Additionally, release of 

prostaglandin contributes to inflammation resolution and 

 

A B 

 

Figure 1: X-linked recessive inheritance in Fabry disease (A) with lysosomal accumulation of globotriaosylceramide (GL-3) and 

gene-disease associations superimposing (B) from DisGeNET. 
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promotes wound-healing important to restore tissue integrity 

and the earliest is known to be involved in smooth muscle 

contraction/relaxation and as well a potent inhibitor of 

platelet aggregation [14]. 

Additionally, the earlier event of disruption in the trade-off 

between production and degradation of extracellular matrix 

(ECM)throughout a long-term tissue injury can result in the 

deposition of ECM and consequently lead to pathological 

fibrosis [15] as observed in diabetic nephropathy and FD 

[16,17]. In a similar way, activation of many peptidases was 

also described and therefore exert direct proteolytic activity 

against ECM molecular entities or alternatively by activation of 

other proteases. For instance, proteolytic-antiproteolytic 

imbalance due to increased levels of collagens (COL11A1, 

COL1A2, COL3A1, COL4A2, and COL4A6) and augmented 

expression of cathepsins (CTSB) a main driver of proteolysis 

due to activation of a cascade of proteases which contrasts 

with over expression of several protease inhibitors (PI3, 

SERPINA3, SPINK1, SPINT1, ITIH4, and CSTB) [10]. 

Concomitantly, the association between altered states of ECM 

and overall FD severity could be indicative that ECM-turnover 

may play a role in FD pathogenesis [18,19]. 

Other known hallmarks in many cardiovascular diseases, such 

as enduring oxidative stress, was also reported in FD, for 

instance the activation of reactive oxygen species (ROS) 

response molecular elements. This is reinforced by the fact that 

Gb3 promotes oxidative stress and leads to an augmented 

expression in endothelial cells of many adhesion proteins [20]. 

In contrast, other studies report that, based on the molecular 

aspects of FD, many patients are more likely to resemble 

abnormalities related with renal insufficiency than to the 

underlying primary disease itself [21]. 

CONCLUSION 

A growing body of evidence in FD investigations supports the 

general hypothesis that an augmented profile of endothelial 

inflammation is earlier established in tandem with a hold-up of 

several phases of wound-healing, which leads to a long-lasting 

inflammatory phase. The pathogenicity of FD has long been 

solely credited to the long-term and continuous deposition of 

Gb3 in the vascular endothelium. Nevertheless, this initial 

metabolic defect is also known to trigger a cascade of 

molecular events that leads to earlier fibrosis, endothelial 

dysfunction and, with the advance of the disease, may promote 

recurrent thrombotic events during a patient’s life. 
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