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ABSTRACT 

Enhancement of GABAA receptor inhibition has long been used in the treatment of 

anxiety beginning with meprobamate, diazepam, chlordiazepoxide, and alprazolam 

in present times.  Positive allosteric modulation of GABAA receptors has thus proven its 

place in medical practice.  Subsequent work focused on the design of compounds with 

reduced sedative liabilities.  Several non-benzodiazepine GABAA-positive allosteric 

modulator (PAM) compounds (MRK-409, TPA-023, TPA-023B, NS11821, AZD7325 

and PF-06372865) were tested in early clinical trials but suffered from signs of 

sedation and motor impairment and only three compounds progressed to proof of 

concept studies (TPA-023, AZD7325 and PF-06372865).  TPA-023 was terminated 

due to toxicity in preclinical species while AZD7325 and PF-06372865 did not 

achieve efficacy endpoints in clinical trials.  All compounds tested in Phase-II trials 

produced some signs of sedation at the minimum effective dose. We highlight a new 

compound, KRM-II-81, that is an imidazodiazepine selective for GABAA receptors 

containing 2/3 proteins.  KRM-II-81 has demonstrated a reduced liability for motor-

impairing and respiratory effects compared to non-selective agents.  KRM-II-81 has 

shown efficacy in animal models of epilepsy and is active in models for which other 

standard-of-care antiepileptics are not active.  KRM-II-81 also produces anxiolytic-

like effects but with minimal sedation.  In contrast to benzodiazepines like diazepam, 

KRM-II-81 also produces anti-nociceptive effects including reduction in pain responses 

in models of neuropathic pain.  Unlike diazepam, KRM-II-81 displays antidepressant-

like effects.  KRM-II-81 dampens cortical excitability in mice with traumatic brain 

injury.  Thus, KRM-II-81 is a newly discovered, non-benzodiazepine compound, which 

targets a selective population of GABAA receptors for improved therapeutic gain and 

reduced side effects. 

ABBREVIATIONS 

KRM-II-81: 5-(8-ethynyl-6-(pyridin-2-yl)-4H-benzo[f]imidazo[1,5-a][1,4]diazepin-3-

yl)oxazole; PAM: Positive Allosteric Modulator 

mailto:rok_cerne@yahoo.com
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INTRODUCTION 

The history of diazepam rests upon the backs of giants. The 

first rationally-designed anxiolytic drug, meprobamate 

(Miltown) (Figure 1) was discovered and championed by Frank 

Berger who modified (with Bernard Ludwig) the muscle 

relaxant mephenesin with the goal of reducing muscle-relaxing 

and sedative properties while augmenting anti-anxiety effects. 

Miltown was the first blockbuster drug and was, in the late 

1950s, being used by many people in the United States [1].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The carbamate, mebrobamate, led to the next generation of 

anxiolytic drugs - the 1,4-substituted benzodiazepines. In 

search of a drug to compete with meprobamate, Hoffmann La-

Roche synthesized many compounds without finding 

improvement over meprobamate and the project was 

terminated by management. Months later, these compounds 

were slated for destruction when a lab technician noted that Ro 

5-0690 had not been tested [2]. The head of medicinal 

chemistry, Leo Sternbach directed animal testing [3] and took 

the compound himself providing the first clinical data on 

chlordiazepoxide [2]. With the introduction of 

chlordiazepoxide (Librium) (Figure 1) into clinical practice with 

FDA approval in 1959, another generation of anxiolytic agents 

was born and, as with meprobamate, found widespread use 

for anxiety. Diazepam (Valium) (Figure 1) arose from the 1,4-

substituted benzodiazepine chemical series and was approved 

for clinical use in 1965. By 1970, antianxiety drugs, mostly 

benzodiazepines, were used by 1 in 5 woman and 1 in 13 men 

in the United States [4]. Valium was and still is a highly 

valuable drug used for the treatment of anxiety and other 

disorders including acute convulsions. Despite its bad press for 

being addictive [5], and the reluctance of the medical 

community to prescribe it wholesale, it is still widely used and is 

sold over-the-counter in a number of countries and has been 

included in the World Health Organization's List of Essential 

Medicines. Valium as an anxiolytic has now been largely 

supplanted by another benzodiazepine, alprazolam [6,7] 

(Figure 1).   

 

 

 

 

 

 

 

 

 

 

 

 

Overall, this history demonstrates the huge demand for 

medicines that control anxiety, a disorder of high prevalence 

worldwide. In modern times, primarily due to concern for 

dependence and abuse of benzodiazepine anxiolytics, the 

first-line therapies for anxiety prescribed by most physicians in 

the United States are the antidepressant/anxiolytics that block 

reuptake of monoamines (e.g., selective serotonin uptake 

inhibitors or SSRIs like Prozac, Figure 1). Although there is 

ample clinical documentation of their ability to impact anxiety 

symptoms [8,9], the comparative magnitude of effect is often 

relatively small, it requires weeks of daily dosing to achieve 

full therapeutic benefit in responders [10-12] and can lead to 

adverse effects such as sexual dysfunction in some patients 

[13].  

One issue with the benzodiazepine anxiolytics that is key to 

understanding their therapeutic value as well as an aspect of 

their pharmacology that impedes therapeutic utility is the dose-

 

Figure 1:  Structures of some classical anxiolytic drugs 

including the carbamate, meprobamate, the 1,4-

benzodiazepines, chlordiazepoxide, diazepam, and 

alprazolam, and the selective serotonin uptake inhibitor, 

fluoxetine. 

 

Figure 2:  Structures of some compounds that potentiate 1-

containing GABAA receptors less than that of other α - 

containing  GABAA receptors. 
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dependent sedation that these compounds produce. While 

sedation is sometimes desired, sedation is a dose-limiting side-

effect for some other indications. For example, although it is 

well-known that increasing inhibitory tone in the nervous system 

by amplifying GABA signaling is a critical mechanism for many 

neurological and psychiatric disorders, the 1,4 

benzodiazepines are often not used because efficacious 

plasma levels cannot be achieved without undesirable sedative 

and motor-impairing effects. This major point will be 

elaborated below in the discussion of the comparative 

pharmacology of diazepam vs. a newly discovered GABAA 

receptor PAM. 

Rational drug discovery efforts directed at creating improved 

GABAA receptor PAMs came from basic pharmacological data 

along with the discovery of the benzodiazepine receptor 

[14,15] and its role in potentiation of GABA currents [16]. This 

discovery enabled establishment of binding assays (using 

[3H]BZs to identify and optimize ligands for benzodiazepine 

receptor interaction [17]. Promising ligands were then 

evaluated in animal models for efficacy and reduced 

unwanted side effects (reviewed in [18]). At least four such 

compounds (bretazenil, abecarnil, alpidem, and ocinaplon) 

progressed into clinical trials due to their favorable preclinical 

profile but mostly discontinued due to sedation (bretazenil, 

abecarnil) or liver toxicity (ocinaplon) observed in humans. 

Alpidem was approved as an anxiolytic with relatively little 

sedation [19] but was later withdrawn due to high occurrence 

of hepatitis [20]. Based upon the ability of some compounds to 

produce anxiolytic-like effects without sedation in animal 

models (e.g., CL218-872), it was early hypothesized that 

multiple benzodiazepine receptors might exist that mediate 

anxiolytic versus sedative effects [21] The advent of molecular 

biology enabled further refinement in the search for anxio-

selective drugs. 

The GABAA receptor is a pentameric ligand-gated ion channel, 

allowing for various combinations of five different subunits, 

which are expressed humans as the following types: α 1-6, β1-

3, γ1-3, ρ1-3, δ, ε, π, and θ [22,23]. Each functional GABAA 

receptor includes both an α and β subunit, and typically 

include α-, β-, and γ-subunits in a 2:2:1 ratio for functional 

activity. The particular α-subunit contributing to the 

benzodiazepine binding site of GABAA receptors defines the 

receptor’s pharmacological properties; α1-subtype-containing 

GABAA receptors have been found to preferentially mediate 

the sedative, amnestic, ataxic effects of ligands as well as 

dependence [24-29], whereas α2- and α3-subtypes mediate 

anxiolytic effects [30,31] and pain therapeutics [32,33] and 

the α5-subtype has been implicated in memory function 

[34,35] . Such studies also directly demonstrated that when the 

α1-subtype was rendered insensitive to benzodiazepines, the 

therapeutic window of diazepam was markedly increased [30] 

while the anxiolytic efficacy of diazepam was retained [25]. In 

addition, analgesic efficacy, not previously observed with 

diazepam, was uncovered due to the decreased sedation and 

motor impairment that resulted from the deletion of its 

interactions with 1-containing GABAA receptors [36]. Based 

primarily on the data associating 1-containing GABAA 

receptors with sedation, substantial discovery effort over the 

last 15 years was directed at the identification and 

development of GABAA -receptor PAM anxiolytics, 

antiepileptics and analgesics with preference for 2 and 3 

over 1-containing GABAA receptor subtypes [37]. 

SUBTYPE SELECTIVE GABAA PAMS 

One of the first “selective” molecules reported was L–838,417 

(Figure 2), a partial agonist at α2,3- and α5-containing 

receptors and a negative allosteric modulator at α1-containing 

receptors. L-838,417, produced anxiolytic-like effects in the 

elevated plus maze but did not impair motor activity [25,38]. 

Further drug discovery effort at Merck resulted in three 

compounds which were progressed into clinical studies; two 

analogs of L–838,417 (TPA-023 and MRK-409) (Figure 2) and 

a structurally unrelated TPA-023B (Figure 2) [39]. All three 

compounds were partial agonists at α2/3 subtypes with no 

substantial α1 efficacy in vitro [40]; they were all efficacious in 

animal models of anxiety without observed sedation [41]. 

Clinical data, however, presented a more complex picture - 

MRK-409, despite its minimal activity at α1 subtypes, 

produced sedation in man at relatively low (< 10%) levels of 

receptor occupancy [42]. Considering that the sedation liability 

of MRK-409 in man could be attributed to its residual partial 

agonist efficacy at the α1 subtype [43], a second compound in 
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this series, TPA-023, was developed which lacked any 

appreciable efficacy at the α1 subtype. In Phase-II clinical 

trial, TPA-023 produced anxiolytic effects, however it also 

exhibited signs of sedation such as dizziness, drowsiness, and 

motor incoordination [41,44-46]. The sedative effects were 

however observed at relatively high levels of receptor 

occupancy (>50%) which was substantially higher than 24% 

reported for diazepam [47]. The clinical trial was terminated 

early due to preclinical toxicity issues (cataract formation in 

rodents) which prevented completion of the study and 

determination of a conclusive efficacy readout. It is possible 

that mild sedative effects of TPA-023 are at least in part due 

to the potentiation of GABAA α 2/3 subtypes as reported in a 

recent primate study [48]. The follower compound, TPA-023B, 

which similarly lacked α1 PAM activity in vitro (was an 

antagonist) produced weak signs of sedation in early clinical 

trials at approximately 50% receptor occupancy [49]. No 

human efficacy data were reported and clinical development 

of TPA-023B was terminated. The reasons for this decision 

were not publicly disclosed. 

Two more recent α1-sparing, partial subtype-selective GABAA 

receptor PAMs are NS11821from Neurosearch (structure not 

disclosed) which primarily potentiates α2/3/5 subtypes and 

AZD7325 from Astra Zeneca (Figure 2) which exhibited good 

efficacy at α2/3 subtypes. In animal models both ligands 

produced a dose dependent reduction of anxiety-like behavior 

with less sedation, motor impairment, and memory impairment 

than diazepam or chlordiazepoxide [50,51]. In early clinical 

trials NS11821 displayed a small pharmacodynamic effect (a 

decrease in saccadic peak velocity) with weak signs of 

sedation (body sway and the visual analogue scale for 

alertness) and signs of memory impairment which may result 

from its activity at α5 subtypes [51]. No receptor occupancy 

(RO) was reported for NS11821 and the compound was not 

evaluated in a proof of concept clinical trial. AZD7325 

required RO > 80% [50,52] to produce a pharmacodynamic 

response (saccadic peak velocity, EEG spectrum); however, this 

high level of receptor occupancy was not sufficient for 

achieving significant anxiolytic activity [50]. While AZD7325 

produced lower cognitive and neurophysiological side effects 

than lorazepam, benzodiazepine-like side effects (dizziness, 

headache and somnolence) were reported at sub-anxiolytic 

doses [50]. 

The most recent GABAA receptor subtype selective compound 

(2/3/5 vs 1) evaluated in the clinic was PF-06372865 

(Figure 2) [53,54]. PF-06372865 was efficacious in an animal 

model of absence epilepsy [55] in multiple pain modalities in a 

Phase-I clinical trial [56], and in a small Phase-II trial for 

photosensitive epilepsy [57]. No severe side effects were 

reported, although sedation and dizziness were reported in 

half of the photosensitive epilepsy patients. When tested in a 

larger Phase-II trial for lower back pain, the ligand did not 

achieve the primary efficacy end point of reduction in pain 

intensity and produced benzodiazepine-like side effects 

including sedation and memory impairment [58]. In a clinical 

Phase-II trial for anxiety, PF-06372865 failed for lack of 

efficacy and for induction of side effects [59]. It is possible that 

the ~50% occupancy produced with the maximal dose of 7.5 

mg was not sufficient for critical therapeutic effect [53]; 

however, the occurrence of somnolence, dizziness and memory 

impairment at this dose would preclude higher dosing. No 

further work on this compound has been reported. 

In summary, all of the compounds with relative in vitro 

preference for α2/3 versus α1-containing GABAA receptors 

displayed efficacy in the absence of benzodiazepine-like side 

effect in animal models. However, both the efficacy and the 

side-effect profiles in humans were not as impressive as 

preclinical data forecasted. Benzodiazepine-like side effects 

were observed for all compounds in early clinical trials and 

only three compounds progressed to Phase-II (TPA-023, 

AZD7325 and PF-06372865) where they suffered from weak 

efficacy at the dose that started to produce side effects. These 

findings suggest that reduced activity at α1-containing GABAA 

receptors, while beneficial, has not been sufficient to create the 

desired therapeutic profile for the drug developers to date. 

BIASED BENZODIAZEPINE RECEPTOR LIGANDS 

Even though benzodiazepines as a class act at all γ subunit 

containing GABAA receptors (2,3,5), some compounds 

display less sedation than others. One such compound is 

clobazam [60,61], whose milder sedative liability could have 

contributed to its approval as an add-on therapy for Lennox-

Gastaut syndrome [62]. A small proof of concept clinical trial 
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also reported reduction of capsaicin-induced hyperalgesia with 

clobazam [63]. The activity of clobazam might be due, at least 

in part, to buildup of its active metabolite, N-desmethyl-

clobazam. The metabolite exhibits functional selectivity for 

a2,3,5 GABAA receptor subtypes and is less efficacious at a1 

subtype [64]. N-desmethyl-clobazam was further evaluated in 

invivo in animal models of pain where it produced significant 

analgesia without sedation [64] The authors of the study filed a 

patent for clinical use of N-desmethyl-clobazam for chronic 

pain [65] but the compound has not, to our knowledge, been 

evaluated in a clinical setting. The discovery of compounds 

which retain the beneficial properties of benzodiazepines but 

cause less sedation continues to be an exciting proposition.   

 

 

 

 

 

 

 

 

 

 

 

Cook and associates synthesized HZ-166 (Figure 3), a non-

benzodiazepine molecule [imidizodiazepine] GABAA receptor 

PAM with preference for α2 and α3 versus α1-containing 

GABAA receptor subtypes [66,67], The selectivity of HZ-166 

compared to diazepam is shown in (Figure 4). HZ-166 was 

efficacious in animal models of pain and produced no overt 

sedation or tolerance [68]. Further progression of HZ-166 was 

prevented by its poor pharmacokinetic properties resulting 

from the ester functionality rendering the compound liable to 

metabolic deactivation through ester hydrolysis (e.g., Poe et al. 

[67]). This liability led to SAR optimization and the synthesis of 

several HZ-166 analogs with improved pharmacokinetic 

properties. One such analog, KRM-II-81 (Figure 3) was 

discovered in 2016 when Poe and colleagues created the 

oxazole bio-isostere of HZ-166, KRM-II-81, by a 

straightforward synthetic route (Figure 5). KRM-II-81 retained 

selectivity for GABAA 2/3 receptors over GABAA 1 

receptors expressed in oocytes [33,69] (Figure 4). In contrast, 

diazepam does not largely discriminate among GABAA 

receptor configurations (Figure 4). Similar observations were 

reported for GABAA receptors expressed in mammalian cells 

where both the potency and efficacy of KRM-II-81KRM-II-81 at 

the α1 subtype were lower than at α2 and 3 subtypes [67]. 

Conversely, the reverse was reported for zolpidem with higher 

efficacy and potency at the α1 subtype [70]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

       

        

 

 

 

 

 

 

 

 

 

 

 

 

The physiological relevance of the effects of KRM-II-81was 

further demonstrated in isolated dorsal root ganglion neurons 

where KRM-II-81 potentiated native GABA currents [71]. 

 

Figure 3:  Structure of HZ-166 and the ester bioisosters, 

KRM-II-81 and KRM-II-82.  HZ-166 and KRM-II-81 are 

selective for 2/3-containing GABAA receptors while 

KRM-II-82 is not selective. 

 

Figure 4:  Average enhancement of the current evoked by 

GABA EC3 by 0.1 μM (α1, α2, α3, α5) or 1 μM (α4, α6) of 

the modulator indicated. The response was divided by the 

peak response to GABA alone for each cell. The dashed 

line at 100% indicates the response to GABA alone. Bars 

represent mean + SEM (n = 4−8).  Cells were transiently 

transfected with one of the α subtypes, as indicated, along 

with β3 and γ2L, and voltage clamped at −50 mV. Data 

for KRM-II-81 and diazepam are replotted from Lewter et 

al. [33]; data for KRM-II-82 are replotted from Methuku et 

al. [69]. 

 

Figure 5.  Synthetic scheme for KRM-II-81 from HZ-166. 
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Surprisingly the 30nM potency of KRM-II-81 in native cells 

exceeded the potency reported for recombinant cells [67] and 

oocytes [33] with the mechanism of potency differences 

remaining unexplored. For predicting behavioral end points, 

data from isolated neurons may not be sufficient in view of 

neuronal network complexity. For that reason, the effects of 

KRM-II-81 were tested on hyper-excited networks of cortical 

neurons recorded with a microelectrode array. KRM-II-81 

reduced the frequency of neuronal firing and bursting [72] thus 

demonstrating the relevance of KRM-II-81 as a potential 

antiepileptic drug. The anticonvulsant action of KRM-II-81 in 

vitro was confirmed by microelectrode recordings from slices 

obtained from freshly excised cortex from epileptic patients 

where KRM-II-81 suppressed epileptiform activity.  

As a GABAA receptor PAM, KRM-II-81 produced a host of 

effects that suggest its viability as a therapeutic for epilepsy 

[72,73], pain [33,71], anxiety [67,74], depression [69], and 

traumatic brain injury [75]. The discussion to follow will provide 

data to illustrate these biological activities of KRM-II-81 and 

those that differentiate the effects of KRM-II-81 from that of 

the non-α-selective compounds diazepam, chlordiazepoxide, 

and alprazolam. Both diazepam and KRM-II-81 produce 

anticonvulsant effects in rodent models [72]. However, under 

some conditions, diazepam was less efficacious. For example, 

KRM-II-81 increased the seizure threshold to pentylenetetrazol 

to a greater extent than diazepam (Figure 6, left panel) and 

increased the after-discharge threshold more than diazepam in 

amygdala-kindled rats (Figure 6, right panel). In both assays, 

HZ-166 was inactive (Figure 6). KRM-II-81 exhibited broad 

efficacy as an anticonvulsant drug in a host of seizure-

provocation models [72] and in models of pharmaco-resistant 

epilepsy where some standard-of-care antiepileptic medicines 

are ineffective [75]. 

Although GABA is known to be an integral biological mediator 

of pain, diazepam and other 1,4-benzodiazepines are 

generally not used to control pain [76]. It is argued that the 

sedative liabilities of diazepam do not allow sufficient dosing 

to produce therapeutic benefit [25,36,43,77,78]. In an animal 

model of inflammatory pain, diazepam is not active in reducing 

formalin-induced pain behaviors while KRM-II-81 is (Figure 7). 

KRM-II-81 is also effective in reducing pain in other rodent 

models of inflammatory pain [33] and in models of neuropathic 

pain [71]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Diazepam is a known anxiolytic [79]. The GABAA 

receptor α2/3 mechanism is also effective in producing 

anxiolytic-like effects. For example, KRM-II-81, like the 

anxiolytic chlordiazepoxide, decreased marble-burying in mice 

(Figure 8, left panel). However, in contrast to KRM-II-81, 

chlordiazepoxide impaired motor performance of these mice 

on a rotarod (Figure 8, right panel). 

Benzodiazepine anxiolytic drugs are not generally used for the 

treatment of Major Depressive Disorder (MDD). KRM-II-81 was 

active in the forced-swim test in mice, a model that detects 

antidepressant drugs (Figure 9). In contrast, diazepam was not 

active under these conditions. However, if the motor-impairing 

effects of diazepam are prevented by the 1-containing 

 

Figure 6.  Left Panel.  Comparative effects of HZ-166, 

KRM-II-81, KRM-II-82, and diazepam against convulsions 

induced by pentylenetetrazole (PTZ, i.v.) in rats.  Data 

show the dose of PTZ required to induce convulsions as a 

function of drug dose (mean + SEM, n=8). * p<0.05 

compared to vehicle by Dunnett’s test after ANOVA.  
Right Panel.  Comparative effects of HZ-166, KRM-II-81, 

and diazepam on after-discharge thresholds in 

amygdala-kindled rats.  The scale for the after-discharge 

threshold (ADT) is scale-adjusted to capture the stimulation 

scale change required to observe a seizure from the 

previous baseline to the ADT scored on test day. The 

average scale adjusted ADT was approximately 0.63 mA 

in vehicle treated rats. * p<0.05 compared to vehicle 

control (n=8/group) by Dunnett’s test after ANOVA  
Reprinted from Neuropharmacology,  Vol. 137, Witkin et 

al. [72], Bioisosteres of ethyl 8-ethynyl-6-(pyridin-2-yl)-

4H-benzo[f]imidazo [1,5-a][1,4]diazepine-3-carboxylate 

(HZ-166) as novel α2,3 selective potentiators of GABAA 

receptors: Improved bioavailability enhances 

anticonvulsant efficacy.Pages 332–343, Copyright © 

2018, with permission from Elsevier Ltd. 
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GABAA receptor antagonist, B-CCt [74], then diazepam 

showed an antidepressant-like signal comparable to that of 

KRM-II-81 (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

That 1-containing GABAA receptors are responsible for the 

motor-impacting effects of GABAA receptor PAMs was further 

supported by data comparing KRM-II-81 with KRM-II-82. KRM-

II-82 impaired rotarod performance of mice at 30 mg/kg 

whereas KRM-II-81 did not (Figure 10). KRM-II-82 potentiated 

current in GABAA receptors containing 1 subunits, whereas 

KRM-II-81 did not (Figure 4). 

Side effects of drugs are only important when considered in 

relationship to their therapeutic or efficacious doses or 

exposure levels. Diazepam and KRM-II-81 can be contrasted 

based upon a ‘therapeutic index’. For example, when doses 

that impair motor performance are compared to the doses that 

produce efficacy in rodent seizure models, KRM-II-81 showed a 

larger separation or protective index than that of diazepam 

across a host of assays (Figure 11). A similar separation in 

respiratory side-effects has been reported between KRM-II-81 

and the anxiolytic alprazolam (Figure 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:  Comparison of effects of diazepam and KRM-II-

81 on pain behaviors in the late phase of the formalin 

assay in rats.  Effects of tramadol (Tram, 80 mg/kg) are 

shown as a positive control. Each point represents the 

mean + SEM of the same 8 rats *p<0.05 compared to 

vehicle control data by Dunnett’s test after ANOVA.  Data 
are extracted and replotted from Witkin et al. [71]. 
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Figure 8.  Left Panel.  Effects of KRM-II-81 and 

chlordiazepoxide (CDAP) on marble-burying in mice.  

Data represent the mean + SEM (n=10). * p<0.05 

compared to vehicle control by Dunnett’s test after 
ANOVA.  Right Panel.  Effects of KRM-II-81 and 

chlordiazepoxide on rotarod performance of mice. Data 

represent the mean ± SEM (n=10).  KRM-II-81 and 

chlordiazepoxide were given at 30 mg/kg.  * p<0.05 

compared to vehicle control by Dunnett’s test after 
ANOVA.  Data are extracted and replotted from Li et al. 

and Poe et al. [67]. 
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Figure 9: Effects of KRM-II-81 (10 and 30 mg/kg, i.p.) 

and diazepam (22 mg/kg, p.o.) alone or in the presence 

of -CCt (10 mg/kg) on immobility time in the forced-

swim test in mice.   Data represent the mean + SEM 

(n=7-8). * p<0.05 compared to vehicle control by 

Dunnett’s test after ANOVA.  Data are extracted and 
replotted from Methuku et al. [69]. 
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The idea that α protein composition of GABAA receptors can 

guide pharmacological effects has been key to the rational 

discovery of the compounds discussed above. However, it 

should be recognized that there are aspects of the biology and 

pharmacology of GABAA receptors that are not fully 

understood. The mechanism of sedation appears to be more 

complex than the singular reliance on α1 proteins. For 

example, a recent study in primates demonstrated that 

anxiolytic compounds with functional selectivity for 2, 3, 

and/or 5 GABAA receptors can produce a mild-type of 

sedation through the activation of the same receptors subtypes 

[48]. In addition there is evidence that some of the sedation 

and ataxia mediated by drugs that fell out of the clinic was 

mediated by positive modulation at α5/β3/γ2 subtypes [80-

82]. The non-sedating profile of KRM-II-81 is therefore 

consistent with the lack of 5 GABAA receptor potentiation 

observed invitro [33,69]. A different study using α1-subtype 

diazepam insensitive mice [α1 (H101R) mice] found no 

difference in the effect of diazepam on sleep EEG between the 

mutant and the wild type mice [83]. Considering that sleep can 

be used as sedation biomarker [18] the data suggest that the 

α1 subtype of GABAA receptor is not the exclusive driver of 

sedation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We suggest that there are likely multiple routes and 

mechanisms by which one can design molecules to achieve 

medically-targeted effects while reducing side-effects. KRM-II-

81 appears to achieve this end through its selectivity to 2/3-

containing GABAA receptors. Ocinaplon, in contrast, does not 

selectively target these α proteins but has been shown in the 

clinic to have a reduced sedative liability [84,85]. Other 

methods may also exist for optimized drug efficacy/side-effect 

balances within this system. For example, β2/3-subunit 
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Figure 10:  Effects of KRM-II-81 and KRM-II-82 on rotarod 

performance of mice.  Data represent the mean (n=10). * 

p<0.05 compared to vehicle control.  Data are extracted 

and replotted from Poe et al. [67]. 
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Figure 11:  Protective indices for different anticonvulsant 

measures in rats.  The protective index is the ratio [minimal 

effective dose impairing motor performance/minimal 

effective anticonvulsant dose].  KRM: KRM-II-81; Dzp: 

diazepam. Data are extracted and replotted from Witkin 

et al., [72]. 
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Figure 12:  Effects of KRM-II-81 compared to alprazolam 

on respiration in rats. Both compounds were dosed at 3.2 

mg/kg.  Data are means + SEM (n=8).  Respiration rate 

was measured as breaths/min and respiratory volume was 

tidal volume/Kg.  * p<0.05 compared to vehicle control 

by Dunnett’s test after ANOVA.  Data are extracted and 
replotted from Witkin et al. [71]. 



 Pharmaceutical Sciences And Biomedical Analysis Journal 

 09 

Improvements in the Pharmacological Profile of Diazepam by KRM-II-81, an Imidazodiazepine Positive Allosteric Modulator of 

2/3-Containing GABAA Receptors: Preclinical Data Predict Enhanced Efficacy for Epilepsy, Chronic Pain, Anxiety, and 

Depression. Pharmaceutical Sciences And Biomedical Analysis Journal. 2019; 2(1):117. 

subtype-selective GABAA receptor PAMs have been shown to 

produce reduced motor-impacting effects [86-88]. 

Finally, while lower sedative effects are desirable, their 

elimination is not necessarily required for an improved 

therapeutic agent. The benzodiazepine, alprazolam, is highly 

prescribed for anxiety despite sedative properties. Other 

areas of neurological and psychiatric practice are in such need 

of improved medications, that improved efficacy, as predicted 

for KRM-II-81, are likely sufficient for driving their 

development. For example, despite its dose-dependent 

induction of motor-impairment that includes falling, perampanel 

(Fycompa) is used as a newer antiepileptic drug [89]. And for 

pain, the opioids that have produced devastating health and 

morbidity consequences [90] are in clear need of replacement 

where efficacy with improved safety, as predicted for KRM-II-

81, would be key developmental drivers. 

In summary, KRM-II-81 produces biological effects in rodent 

models suggesting its therapeutic value in several neurological 

and psychiatric disorders. At the same time, KRM-II-81 can be 

differentiated from that of GABAA receptor modulators that 

are not selective for 2/3-containing GABAA receptor PAMs. 

The unique and improved efficacy of KRM-II-81 in models of 

epilepsy and in neuropathic pain is promising. The compound 

awaits clinical data to begin to evaluate the therapeutic 

potential of this novel GABAA receptor PAM. 
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